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ON THE POLYHEDRAL SCHOENFLIES THEOREM 

M. L. CURTIS1 AND E. C. ZEEMAN 

In this note we observe a relationship between the polyhedral 
Schoenflies problem and the question of whether the double suspen- 
sion M" of a Poincare manifold is the 5-sphere. In particular we show 
that if MI= SI, then a polyhedral embedding of Sn-' in Sn must be 
very "nice" if the Schoenflies theorem is to hold. 

DEFINITION 1. Let An be the standard n-simplex and An be its 
boundary. A finite simplicial complex K is a combinatorial n-sphere 
if there exists a piecewise linear homeomorphism h: K-+An+l. 

DEFINITION 2. An embedding Sn-1 CSn is nice if there is a simplicial 
decomposition of Sn such that Sn-' is a subcomplex and both Sn-1 and 
Sn are combinatorial spheres. 

We have the following theorem (see [5]): 

THEOREM 1. If the embedding Sn- CSn is nice, then the Schoenflies 
theorem holds; i.e., Sn-Sn-S consists of two disjoint n-cells. 

DEFINITION 3. An embedding Sn-1 CSn is of type I if Sn can be 
represented as a combinatorial n-sphere with Sn-1 a subcomplex. An 
embedding is of type II if there is a simplicial decomposition of Sn 
such that Sn-' is a subcomplex which is a combinatorial (n-1)- 
sphere. 

We construct a definite Poincare manifold M3 in S4. Let P be the 
2-polyhedron obtained by attaching the boundaries of two disks to 
two oriented curves a and b (with one common point) according to 
the formulae a-2bab= 1, b-5abab= 1. Then xri(P) has the presentation 

la, b a-2bae=1, b-5abab=1 }, and Newman [4] has shown that 
7ri(P) =O. Now P can be embedded in S4 as a subcomplex (see [2; 
4]) with S4 decomposed as a combinatorial 4-sphere. Then the bound- 
ary M3 of a nice neighborhood of P is a Poincare manifold [2]. It 
follows that the double suspension M' of Al3 is a subcomplex of 
the combinatorial 6-sphere S6. This is used in Theorem 3. 

We note that if M' is locally euclidean, then MI= SI. For Mazur 
[3] has proved that if X is a finite polyhedron and the cone C(X) is 
locally k-euclidean at the cone point, then C(X) - X =EEk. Now MA 
is the suspension of the single suspension M4 of M3 and the suspen- 
sion with one suspension point removed is just C(M4)-M4. If this 
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is El, then the suspension is just the 1-point compactification of E5, 
namely S6. 

THEOREM 2. If MI = SI, then the Schoenflies theorem fails for embed- 
dings of type II with n=5. 

PROOF. Let a be a 3-simplex of M3 with boundary f. Then the 
double suspension of : is a combinatorial 4-sphere S4 in MI = SI. But 

7r,(M3-o) =1ri(M3) O0 and one complementary domain of S4 in SI is 
just (M3 -o) XI, which is not simply connected. 

THEOREM 3. If MI = SI, then the Schoenflies theorem fails for em- 
beddings of type I with n = 6. 

PROOF. By the construction of M3 CS4 given above, we have that 
M5=S5CS6 is an embedding of type I with n=6. Let D3 be the 
complementary domain of M3 in S4 which contains P. By projecting 
from suspension points we can get deformation retractions of a com- 
plementary domain DI (of S CS6) onto D4 (of M4CS5) onto D3. 
Hence DI is not simply connected and therefore is not a cell. 

REMARK. Since it seems difficult to prove that MI5= SS, it must be 
hard to show that embeddings of types I and II satisfy the simple 
condition Sn-1XICSn which Morton Brown [1] has shown is a 
necessary and sufficient hypothesis for the Schoenflies theorem. 
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