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IN (11) J. H. C. Whitehead introduced the theory of regular neighbour-
hoods, which has become a basic tool in combinatorial topology. We
extend the theory in three ways.

First we relativize the concept, and introduce the regular neighbourhood
N of X mod Y in M, where X and Y are two compact polyhedra in the
manifold M, satisfying a certain condition called link-collapsibility. We
prove existence and uniqueness theorems. The idea is that N should be a
neighbourhood of X— Y, but should avoid Y as much as possible. The
notion is extremely useful in practice, and is illustrated by the following
examples. We assume M to be closed for the examples.

(i) If Y = 0 then N is a, regular neighbourhood of X. Therefore the
relative theory is a generalization of the absolute theory.

(ii) If X is a manifold with boundary Y, then the interior of X lies in
the interior of N and the boundary of X lies in the boundary of N; in other
words X is properly embedded in N.

(iii) Let I b e a cone and suppose that X n Y is contained in the base of
the cone. Then N is a ball containing X— Y in its interior, I n Y in its
boundary, and Y — X in its exterior.

The last example was used in ((12) Lemma 6), and was one of the
examples which suggested the need for a relative theory. Other illustra-
tions of the use are to be found in the proofs of Theorem 2, Corollary 8,
and Lemmas 7, 8, and 9 below, in the proof of Theorem 3 of (4), and in
forthcoming papers by us on isotopy.

Secondly, Whitehead proved a uniqueness theorem that said that any
two regular neighbourhoods were (piecewise linearly) homeomorphic.
We strengthen this result by showing them to be isotopic, keeping a
smaller regular neighbourhood fixed (Theorem 2). In fact they are
ambient isotopic provided that they meet the boundary regularly
(Theorem 3), which is always the case if M is unbounded.

Thirdly, Whitehead wrote the theory in the combinatorial category, and
we rewrite it in the polyhedral category. The difference is that the
combinatorial category consists of simplicial complexes and piecewise-
linear maps, whereas the polyhedral category consists of polyhedra and
piecewise-linear maps. In this paper by a polyhedron we mean a topological
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space together with a maximal non-empty family of piecewise-linearly
related triangulations, each triangulation being a countable simplicial com-
plex (for a more general definition of polyhedral space see (14) and (15)).
In particular if the polyhedron is compact then each triangulation is a
finite complex. The main advantage of using the polyhedral category is
to be found in isotopy theory: particular triangulations need never appear
in the statements of theorems, only in the proofs.

The paper is divided into three sections. In § 1 we give the definitions
and state the existence and uniqueness theorems, Theorems 1,2, and 3.
Section 2 is devoted to applications, and we deduce eleven corollaries
concerning spines of manifolds, knots of codimension 2, and local
knottedness of embeddings and isotopies. Section 3 consists of the proofs
of the three theorems.

1. Definitions and results

Notation

I stands for the unit interval.
M stands for a connected polyhedral manifold, M its boundary, and M

its interior. M may or may not be compact, and may or may not be
bounded.

X, Y stand for compact polyhedra in M. X — Y stands for the points in
X that are not in Y. We shall always be needing two particular polyhedra
obtained unsymmetrically from X and Y, and so we introduce a special
notation for them:

FIG. 1

We shall only use the symbol k in contexts where it is unambiguous.
Notice that if X^,Y^ denote the pair obtained by applying the process i?
to the pair X^Y^ then X^ = X^ and Y^ = Y^; in other words ^ = t|.

J, K, L stand for complexes triangulating M, X, Y. Therefore J is a
countable (finite or denumerable) combinatorial manifold, and K, L are
finite subcomplexes. The modulus sign \K\ stands for the polyhedron
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underlying K. Thus

| J | = Jf, \K\ = X, \L\=Y, \K^\ = X^ IX,, | = ^ .

If A is a simplex of K, denote by lk(^4,i£), st(A,K), and st(A,K),
respectively, the link, open star, and closed star, of A in K.

All maps, homeomorphisms, and isotopies are piecewise linear. We
use ^ to denote homeomorphisms onto.

Collapsing

A complex K simplicially collapses to a subcomplex L if there exists a
sequence of subcomplexes

K=--K0^K1=>...=>Kr = L,

such that for each i, Ki — JQ_X consists of a principal simplex of iQ and a
free face.

A complex K collapses to a subcomplex L, written i £ \ L, if there exist
subdivisions K', L' of K, L such that K' simplicially collapses to L'. (It is
not known whether or not K simplicially collapses to L in these
circumstances.) K is collapsible if it collapses to a point. A polyhedron X
collapses to a subpolyhedron Y, written X \ Y, if for some triangulation
K, L of X, Y we have K\L. X is collapsible if it collapses to a point.

Given two subcomplexes K, L of some larger complex, let K^,L^ be
as described above. We sa}' that K is link-collapsible on L if Ik {A, K^) is
collapsible for each simplex A in L^. Given two subpolyhedra X, Y of some
larger polyhedron, we say that X is link-collapsible on Y if for some
triangulation K, L of X, Y we have K link-collapsible on L.

Remark. The definitions of collapsibility and link-collapsibility for
polyhedra are independent of the triangulations, the first by Theorem 7
of (11), and the second as follows. Suppose K*,L* is an arbitrary sub-
division of K,L. If A*EL)*, then \k(A*,K^*) is homeomorphic to the
r-fold suspension oi\k(A,K:t), where A is the unique simplex of L^ whose
interior contains the interior of A*, and where r = dim A—dim A*.
Consequently K is link-collapsible on L if and only if K* is link-collapsible
on L*.

Examples.

(i) Any polyhedron is link-collapsible on itself and on the empty set.

(ii) A simplex is link-collapsible on any subcomplex.

(iii) A manifold is link-collapsible on its boundary, and on any
subpolyhedron of the boundary.

(iv) A manifold is not link-collapsible on an interior point.
5388.3.14 Yy
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(v) A cone is link-collapsible on its base, and on any subpolyhedron of
the base.

(vi) X is link collapsible on 7 if and only if X^ is link-collapsible on 7^.

Definition of regular neighbourhood
We rewrite Whitehead's original definition (11) in terms of polyhedra.

Let X, N be compact polyhedra in the manifold M. We say that N is a
regular neighbourhood of X in M if

(1) N is an ra-manifold (m = dim if) ,

(2) N is a topological neighbourhood of X in M,

(3) N\X.

If only conditions (1) and (3) hold we say that N is a regular enlargement
of X in M. We say that N meets the boundary regularly if, further,

(4) N D M is a regular neighbourhood of X n M in M.

If Nx is another regular neighbourhood of X in M, we say that Nx is
smaller than N if N contains a topological neighbourhood of Nx in M.

Now the relativization. Let X, Y, N be compact polyhedra in M. We
say that N is a regular neighbourhood of X mod Y in M if

(1) iy is an m-manifold,
(2) N is a topological neighbourhood of X— Y in M, and

(3)
We say that N meets the boundary regularly if, further,

(4) (N D M) - 7 is a regular neighbourhood of X n M mod 7 D M in M.
If N-i is another regular neighbourhood of X mod 7 in M, we say that Nx is
smaller than iV if iV contains a topological neighbourhood of Nx — 7 in Jf.

Absolute regular neighbourhood Relative regular neighbourhood

Y r

FIG. 2

Remark 1. If we put 7 = 0 in the relative definition, then we recover
the absolute definition, and so the relative definition is a generalization.

Remark 2. A regular neighbourhood of X mod 7 is in particular a
regular enlargement of X^.
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Remark 3. Any regular neighbourhood of X mod Y is also a regular
neighbourhood of X^ mod Y^, but not conversely in general, because of
condition (2).

Remark 4. If M is unbounded then condition (4) is vacuous, and so
trivially true. If M is bounded and X^M, then condition (4) is the same
as saying N^jfr.

Remark 5. The appearance of (N n M) — Y rather than N n M in
condition (4) of the relative definition looks curious at first sight but is
necessary for the following reason. Let (XnM)^, (Y0 M\ denote the
pair obtained from the pair XnM, YnM. Then (XnHl\^X^nM, but
in general they are not equal. For example consider the case when X is a
manifold with boundary Y, embedded in M so that XnM = YoM = Y.
Then any regular neighbourhood of X n M mod Y n M is the empty set;
but any regular neighbourhood N of X mod Y must contain Y. Therefore
N n M cannot be a regular neighbourhood of X n M mod Y n M. However,
we can choose JV so that it contains no more of M than Y; consequently
(NnJUi)— Y is empty, and so this choice of N will satisfy condition (4).

Second-derived neighbourhoods

Let J be a combinatorial manifold and U a subset of | J |. The simplicial
neighbourhood N(U,J) is defined to be the smallest closed subcomplex
of J whose underlying polyhedron contains a topological neighbourhood
of U in \J\. It consists of all closed simplexes meeting U together
with their faces. In particular if K, L are subcomplexes of J, we define
N(K-L,J) = N{\K\-\L\,J),&n&deducetha,tN(K-L,J) = \j8t(A,J),
the union taken over all simplexes A in K — L.

Suppose X, Y are polyhedra in the polyhedral manifold M. A second-
derived neighbourhood N of X mod Y in M is constructed as follows:
choose a triangulation J oi' M that contains subcomplexes triangulating
X, Y; then choosef a second derived complex J" of J, and define
N = \N{X-Y,J")\.

Isotopy
We recall the definition of isotopy (see (4)). An isotopy of N in M is a

level-preserving embedding / : Nxl->Mxl. Therefore for each t in /
there is an embedding ft: N^M such that f(x, t) = (ftx,t) for all x in N.

In the special case when N^M and/0 is the inclusion map and N± = fx N,
we call / an isotopy in M ni,oving N onto Nv If P^N and f\PxI is the
identity then we say that / keeps P fixed.

f To form a derived complex it is not necessary to use barycentresj we can star
each simplex at an arbitrary interior point. Therefore a choice is involved.
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An ambient isotopy of M is a level-preserving homeomorphism onto,
f:MxI^MxI, such that /0 is the identity. If N,P^M, Nx = fxN,
and f\ P x / is the identity, then we say that / is an ambient isotopy of M
moving N onto Nx and keeping P fixed.

We can now state the main theorems. Let X, Y be polyhedra in M.

THEOREM 1 (Existence). / / X is link-collapsible on Y then any second-
derived neighbourhood N of X mod Y in M is regular. If, further, Xf)M is
link-collapsible on Y r\M then N meets the boundary regularly.

THEOREM 2 (Uniqueness). Suppose that X is link-collapsible on Y, and
let Nlt N2 be two regular neighbourhoods of X mod Y in M. Then there exists
a smaller regular neighbourhood Ns and a homeomorphism of Nx onto N2

keeping N3 fixed. Further, the homeomorphism can be realized by an isotopy
in M moving N± onto N2 through a continuous family of regular neighbourhoods
and keeping N3 fixed.

'/MM'
FIG. 3

If the neighbourhoods meet the boundary regularly we can strengthen
the isotopy to an ambient isotopy:

THEOREM 3 (Uniqueness). Suppose that X is link-collapsible on Y, and
that Xc\M is link-collapsible on Yc\M. Let Nx, N2, N3 be three regular
neighbourhoods of Xmod Y in M meeting the boundary regularly, and such
that JV3 is smaller than Nx and N2. Let P be the closure of the complement of a
second-derived neighbourhood of Nx U JV2 mod Y in M. Then there exists an
ambient isotopy of M moving Nx onto N2 and keeping N3l)P fixed. (See
Fig. 3.)

Remarks.
(i) In Theorem 3, since the isotopy is ambient and keeps X\J Y fixed,

it is a corollary that it moves Nx onto N2 through a continuous family
of regular neighbourhoods that meet the boundary regularly.
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(ii) Our proof of Theorem 3 below shows that in fact the ambient
isotopy is by linear moves (see (4)).

(iii) It is necessary to have Nx and N2 meeting the boundary regularly
for Theorem 3 to be true. For example suppose Y = 0 and X^N^lfr,
and suppose N2 meets the boundary M. Then Nx meets the boundary
regularly (i.e. not at all) but N2 does not, and it is impossible to ambient-
isotope Nx onto N2.

(iv) It is necessary to have the smaller neighbourhood N3 in the thesis
of Theorem 2 rather than in the hypothesis (as it is in Theorem 3). For
consider the following example. Let Y = 0, and let X be a point inside a
3-ball M. Let Nx = M itself. Let N2, N% be second- and third-derived
neighbourhoods of a knotted arc in M, that contains X and has its
end-points in M. Then Nv N2, N3 are regular neighbourhoods of X in M,
and N3 is smaller than Nt and JV2. But there is no homeomorphism of Nx

onto N2 keeping N3 fixed, because Nx — N3 is not homeomorphic to N2 — 2V3.
It is true that we have a situation in which Nt and N2 do not meet the
boundary regularly, but then Theorem 2 is tailored for just such a
situation. If we rechoose N3 to be a little ball about X, then, keeping this
new N3 fixed, we can isotope N2 off the boundary, unknot it, and then push
it out onto Nx.

2. Applications

We postpone the proofs of Theorems 1, 2, and 3 until the next
section, and devote this section to applications, in the form of eleven
corollaries. The first seven depend only on the corresponding absolute
theorems (when Y = 0) a,nd are concerned primarily with spines of
manifolds. The last four corollaries depend essentially upon the relative
theorems, and are concerned with knots of codimension 2, and with local
knottedness of embedding** and isotopies. We also ask six questions
concerning knots.

COROLLARY 1. THE REGULAR-NEIGHBOURHOOD ANNULUS THEOREM.

Let N, N-L be two regular rieighbourhoods of X in M. Suppose that N is
smaller than Nlt and that N meets the boundary regularly. Then Nt — N is
homeomorphic to Fr (N) x / , where Fr (N) denotes the frontier of N in M.
In particular, if X^]k then Nx — N is homeomorphic to N xl.

Proof. Choose a triangulation J of M containing X as a subcomplex.
Let J' be the first barycentric derived of J. L e t / : J' ->I be the simplicial
map that maps a vertex to 0 or 1 according to whether or not it lies in X.
Given e, 0 < e < £, we can choose second- and third-derived complexes of
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J such that
N(XJ")=f-i[0,±] = N2, say,

-) =/-![<>,€] = N3, say.

Then N2 — Ns is homeomorphic to Fr (N3) x / as follows. Let A run over the
simplexes of J' meeting X but not contained in X, in some order of
increasing dimension. The homeomorphism is constructed inductively on
A n iV2 - JVg, which is a 'skew' prism, with walls A n N2 - N3, top A n Fr (N2),
and bottom J. nFr(JVg). By induction the homeomorphism has already
been defined on the walls, so extend it to the top, bottom, and interior,
each of which is a convex linear cell, by mapping some interior point
arbitrarily and joining linearly to the boundary.

By Theorem 2 there is a homeomorphism N2-^N1 keeping a smaller
regular neighbourhood fixed, and therefore keeping N3 fixed if we choose e
sufficiently small. Since N and N3 both meet the boundary regularly, and
are both smaller than Nv we can ambient-isotope Ns onto N keeping
outside—N± fixed by Theorem 3. Therefore there are homeomorphisms

Nx-N ~ N2-N3 ~ Fr (JV3) x J ~ Fr (J\T) x / ,

the last because the ambient isotopy moves Fr(iV3) onto Fr(IV).
If X<^M then the hypothesis that N meets the boundary regularly

implies that N^jft also, and so Fr (JV) = iV".

Notice that in our proof we can, further, choose the homeomorphism
h : JVi-JV-^Fr (N) x I so that hx = (x, 0) for all x in Fr (N).

COROLLARY 2. THE ANNULUS THEOREM (Newman (7)).
If Bn is an n-ball in the interior of the n-ball Bx

n then B^ - Bn ~ tf71"1 x / .

Proof. If x is an interior point of Bn, then both balls are regular
neighbourhoods of x in B-^1, and so the result follows from Corollary 1.

COROLLARY 3. A ball collapses onto any collapsible polyhedron in its
interior.

Proof. Let B^ be the ball and X the collapsible polyhedron, and let
Bn be a regular neighbourhood of X in the interior of B-f. Then Bn is
a ball by Lemma 1 below. Therefore by Corollary 2, B1

n\Bn\X.
Notice that it is necessary that X be in the interior of the ball, otherwise
the corollary is not true; for consider a knotted arc in a 3-ball with its
ends in the boundary.

Spines
We want to generalize the last two corollaries from balls to manifolds.

Let M be a compact bounded manifold, and let X be a polyhedron in the
interior of M. We call X a spine of M if M\X. The interest lies in
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finding a spine that is as 'minimal' and simple as possible. There is no loss
of generality in assuming (for technical convenience) tha t a spine is in the
interior of M, because we can first collapse away a collar from the
boundary. There always exist spines of dimension less than M, because
we can then collapse away all top-dimensional simplexes of some
triangulation. The minimum dimension of a spine is an invariant of M;
for example this dimension is zero if and only if M is a ball.

COROLLARY 4. Let X be a spine of M and N a regular neighbourhood

of X in A.

Proof. The result follows from Corollary 1, because both M and N are
regular neighbourhoods of X in M.

COROLLARY 5. Suppose that X, Y<^$, and X\Y. Then Xisa spine of
M if and only if Y is a spine of M.

Proof. If X is a spine then trivially Y is also because M \ X \ Y.
Conversely, suppose that Y is a spine. Let N be a regular neighbourhood
of X in M. Then N is also a regular neighbourhood of Y because
2 V \ X \ Y. Therefore by Corollary 4, M\N, and so X is a spine of M
because M\N\X.

Ambient simple homotopy type

Two polyhedra X, Y in M are of the same ambient simple homotopy type,
or, more briefly, of the same type, if there exists a sequence of polyhedra
X = X0,X1:...,Xk = Y in M such that

XoSX1\X2/
(X%\ ... Xk;

i.e. each Xt is obtained from its predecessor by collapse or expansion. If
X, Y lie in the interior of M we can without loss of generality assume that
all the Xt also lie in the interior of M; for if not, choose a collar of M not
meeting I or 7 (a collar is an embedding M xI->M such that (x, 0)->x
for each x in M), and let M-> M be the embedding that leaves the inside
of the collar fixed and shrinks the collar to half its length. Then the
images of the Xi give a sequence running from X to Y in the interior of M.

COROLLARY 6. Any X in the interior of M is a spine if and only if it is
of the type of a spine.

Proof. One way is a fortiori. For the other way suppose that X is of the
type of a spine Xo. In other words there is a sequence Xi} 0 < i ^ k, in the
interior of M, of collapses and expansions running from Xo to X = Xk.
Corollary 5 shows, by induction on i, that each Xi is a spine; therefore in
particular X is a spine.
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Remark 1. Corollary 6 is useful for simplifying spines. For example
the spine of a connected bounded 3-manifold M3 can be normalized in the
following sense. We say a O-dimensional complex is normal if it is a point;
a 1-dimensional complex is normal if each vertex locally bounds exactly
three 1-cells (the word 'locally' is to be interpreted by the convention that
if a 1-cell has both ends at the vertex then this counts as the vertex
locally bounding two 1-cells). A 2-dimensional complex is normal if each
1-cell locally bounds exactly three 2-cells, and each vertex locally bounds
exactly four 1-cells and six 2-cells.

Given M3 we can find a normal spine as follows. Choose a minimal
spine K, that is to say one which is of minimal dimension, d say, and which
cannot be collapsed any further. If d = 0 (M3 is a ball) then K is a point.
If d = 1 (M3 is a handlebody) then expand each vertex of K into a little
disk and collapse the disk from one face. If d — 2, expand each 1-cell of K
like a banana and collapse from one side, and then expand each vertex like
a pineapple and collapse from one face. In each case the corollary ensures
that we are left with a spine, and the process described makes it normal.

Remark 2. Further theorems about spines can be obtained by using
Smale's handle theory (9). For example it is shown in ((15) Chapter 9)
that if M is simply connected and Y is a spine of M of codimension > 3,
and if X s Y is a homotopy equivalence, then X is also a spine of M.

Remark 3. In the next corollary we generalize the result from spines to
arbitrary polyhedra in M. For simplicity we assume that M has no
boundary, although a similar result holds for bounded manifolds.

COROLLARY 7. Suppose that M is without boundary. Two compact poly-
hedra in M are of the same type if and only if their regular neighbourhoods are
ambient isotopic.

Proof. Suppose that Xo, Xk are of the same type, XQ/1 X X \ X2 / ... Xk.
Let fy be a regular neighbourhood of Xt. We show that Nt is ambient
isotopic to No by induction on i, the induction starting trivially with i = 0.
Therefore assume i > 0. If i is even then Ni_1\Xi_1\tXi, and so Nt_1} Nt

are both regular neighbourhoods of X^ If i is odd then Ni\Xi
s\Xi_1,

and so Ni_1, Nt are both regular neighbourhoods of Xi-V In either case Nt

is ambient isotopic to Ni_1 by Theorem 3, and hence to No by induction.
Conversely, suppose that X0,X1 have ambient-isotopic regular

neighbourhoods NO,NV To show that X0,X1 are of the same type it
suffices to show that No, N± are of the same type, because Xt is of the same
type as Ni} i = 0,1. Let f: MxI->MxIbe the given ambient isotopy,
and let Ne =f(NQ x e), 0 ^ e < l . Let N be a regular neighbourhood
of No in M. For sufficiently small e>0, f{Nox [0,e])giV, and so by
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((4) Addendum 1.2) there is another ambient isotopy moving No to Ne

supported by N. Therefore the pair (N, Ne) is homeomorphic to the pair
(N, No), and so JV \ Ne because N \ No. Therefore iV0 is of the same type as
Ne by NQ//N\Ne. By the compactness of / , No is of the same type as Nv

Knotted balls and spheres

Recall the notation of (13). Suppose q>m. A sphere pair SQ>m is a pair
of spheres S9 2 Sm. A ball pair Bq>m is a pair of balls Bq 2 Bm, such that
Bq n Bm = Bm. Call q — m the codimension of the pair. The standard ball
pair Aa>m = (SAm, Am), where Am is the standard m-simplex and 2 denotes
(q — m)-fold suspension. The standard sphere pair is the boundary of the
standard ball pair one dimension higher. A pair is unknotted if it is
homeomorphic to a standard pair. In (13) it was proved that any pair of
codimension ^ 3 is unknotted. Knots can occur in codimension 2, but

QUESTION 1. Is any pair of codimension 1 unknotted ?

The answer is 'yes' for q^ 3 by (1); for q>3we know there is a topological
unknotting by (2) and (6), bat we do not know whether there is a piecewise
linear unknotting. The answer to Question 1 depends upon

QUESTION 2. / / Mm is a combinatorial manifold triangulating a topo-
logical m-ball, then is Mm a combinatorial m-ball ?

We know the answer to Question 2 is 'yes' if m ^ 3 by the Hauptvermutung,
and if m ^ 6 by (9), but our ignorance of the dimensions 4 and 5 prevents
an inductive proof of Question 1.

Write B«'m c S9>m if B* c #« and Bm = B*n Sm.

QUESTION 3. / / Bq>m ̂  Sq'm and Sq>m is unknotted, then is Bq<m unknotted ?

In codimension ^ 3 the answer is 'yes' by (13). In codimension 1 the
question is the same as Question 1; for a 'yes' to Question 1 trivially
implies a 'yes' to Question 3. Conversely a 'no' to Question 1 implies the
existence of a knotted ball pair with unknotted boundary, and glueing
two copies of this together by the involution on the boundary embeds this
knotted ball pair in an unknotted sphere pair.

In codimension 2 the answer is 'yes' for q = 3 by the unique-factoriza-
tion theorem of classical knot theory (see ((3) 140)); in other words an
unknotted curve is not the sum of two knots. But for q > 3 the question is
unsolved, and the various proofs for q = 3 break down in higher dimen-
sions for the following reasons, (i) Schubert's unique-factorization proof
((3) 140) depends upon the genus of a knot, which has no sufficiently
strong higher-dimensional analogue, (ii) Mazur's proof ((3) 142) works
only if we know that the boundary of Bq>m is unknotted, and then gives
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only a topological unknotting rather than a piecewise-linear one. (iii) The
algebraic proof using van Kampen's theorem on the complement breaks
down because, for q > 3, we do not know the answer to

QUESTION 4. Given a ball pair B = (Bq, Bq~2) suchthat TTX{B* - Bq~2) ~ the
integers, then is B unknotted?

If q = 3 the answer is 'yes' by a theorem of Papakyriakopoulos (8), but
if q>3 the answer is not known, f If q^5 and we add the additional
hypothesis that B is locally unknotted then Stallings (10) gives a topological
unknotting, but not necessarily a piecewise-linear one.

We now proceed to prove a partial answer to Question 3, which is useful
for applications, for example in the three subsequent corollaries.

COROLLARY 8. / / Bq>m^8q>m are both unknotted pairs then the comple-
mentary ball pair B*q'm = Sq'm — Bq>m is also unknotted.

Proof. The proof that we give works for all codimensions, although for
codimension ^ 3 the result follows from (13), and for codimension 1 the
result follows from the foundational lemma: if a ball contains another ball
of the same dimension, and their boundaries meet in a common face, the
closure of the complement is a ball. In codimension 2 we run into potential
trouble near the boundary, but this kind of trouble is exactly what the
concept of the relative regular neighbourhood is designed to cope with, as
follows. Choose an unknotting homeomorphism h : $a>m->• (S Am, Am),
where 2 denotes (q — m)-fold suspension. Let Bo

q = h^iUfoB711)). Then
Bq and Bo

q are both regular neighbourhoods of Bm mod B*m in Sq.
Therefore by Theorem 3 there is an ambient isotopy of Sq moving Bq onto
Bo

q keeping Bm u B*m = 8m fixed. The end of the isotopy throws B^m

onto h-^ihB^^B^771), which is unknotted. Hence B^m is unknotted.

Local unknottedness

We recall the definitions of (13). Suppose that M,Q are manifolds and
that M is compact. An embedding/ : M-^-Q is called proper \if~xQ = M.
I f / is proper denote by / the restriction of/ to the boundaries, / : M^-Q.

Let <p be a triangulation of/; that is to say, choose triangulations K,L
of M ,Q with respect to which / i s simplicial, and call the simplicial map <p.
In other words the diagram

K * >L

M—J—*Q

t Added in proof. J. Levine has shown that, for locally unknotted ball pairs, with
5^6, if BQ — B"~2 is a homotopy circle then the pair is unknotted; but knots do
exist with TT^B"- BQ~2) ^ the integers.
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is commutative. Denote by dp the corresponding triangulation of/. If v is
a vertex of K, denote by sT (v, <p) and Ik (v, <p) the pairs

sZ(v,p) = (si(<pv,L), <p(sZ(v,K)),

\k(v,r) = (lk(<pv,L), ?(\k(v,K)).

We call / a locally unknotted embedding if for each v in K, si (v, <p) is an
unknotted ball pair.

Remark 1. The definition is independent of the triangulation <p, because
if all the vertex stars are unknotted then the same is true for any sub-
division of K, L, and hence also true for any other triangulation.

Remark 2. By (13) local knotting can only occur in codimension 2 and
possibly codimension 1.

Remark 3. 'Locally unknotted' implies 'proper'. For if v is an interior
vertex of K, then v is interior to si (v, K), and so <pv is interior to si (<pv, L),
by the definition of ball pair. Similarly if v is a boundary vertex of K,
then <pv must be on the boundary of si (<pv, L) and so on the boundary of
L. Therefore <p-*L = &.

Remark 4. A sphere or ball pair is called locally unknotted if the
inclusion map of the smaller in the larger is locally unknotted. If a pair
is unknotted then it is locally unknotted, because we can triangulate with
a standard pair. On the other hand if a pair is locally unknotted it may be
(globally) knotted; for example consider the knots of classical knot theory.

COROLLARY 9. (i)Iffis locally unknotted then so is f.
(ii) / is locally unknotted if and only if, for some triangulation <p of f, all

the links \k(v,<p), vedom<p, are unknotted.

Proof, (i) Let cp : K^-L triangulate/, and, given v in K, let B = si (v, cp).
I f / i s locally unknotted then B is unknotted, and so B is an unknotted
sphere pair. Therefore B is locally unknotted. If veK then veB and so
si(v, B) is unknotted. But s£(v, B) = sf,(v,<p). Therefore / is locally
unknotted.

(ii) Suppose the links are unknotted; then the stars are unknotted
because they are cones on the links. Conversely, suppose the stars
are unknotted; then to prove that the links are unknotted it is
necessary to use Corollary 8 as follows. With the notation of part (i),

o . .

if VEK then Ik(v,cp) = B = an unknotted sphere pair. If VEK, then
\k(v,tp) = B — st(v,B), which is an unknotted ball pair by Corollary 8.

COROLLARY 10. A locally unknotted ball is unknotted in its regular
neighbourhood. More precisely, let (BQ, Bm) be a locally unknotted ball pair
of codimension I or 2, which may be globally knotted. Let Nq be a regular
neighbourhood of Bm in Bq. Then (NQ, Bm) is unknotted.
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Proof. The proof is similar to the proof of ((13) Lemmas 3 and 6), and
we sketch it as follows. The essential new ingredient is Corollary 8, and
we use this to prove, as in ((13) Lemma 3), that if two unknotted ball
pairs meet in a common unknotted face, then their union is also unknotted.
Now we proceed as in ((13) Lemma 6): triangulate Bq so that Bm collapses
simplicially to a point, x say. Then clothe the expansion x / Bm by pairs
of second-derived neighbourhoods in BQ and Bm. In the expanding
sequence of pairs of neighbourhoods, each step is equivalent to glueing on
two little ball pairs each by a face. The local unknottedness of Bm^Ba

ensures that each little ball pair is unknotted, and by using Theorem 3
we can show that the face by which it is glued on is also unknotted: for if
S is the boundary of the little ball pair and F the face, then Fq~x is a
regular neighbourhood of Fm~1 mod ft™-1 in S^1, and since S is unknotted,
we can unknot F by isotoping F9'1 onto a suspension of F™-1 keeping
Fm~x fixed by Theorem 3 (as in the proof of Corollary 8). We begin with a
little unknotted ball pair, namely the star of x, and each time we glue on a
little ball pair the result remains unknotted. Therefore, by induction on
the number of steps, we finish with (iV*3, Bm) unknotted, where N*q is the
second-derived neighbourhood of Bm in Bq. By Theorem 2 there is a
homeomorphism Nq-+N#q keeping Bm fixed, and so (Nq,Bm) is also
unknotted.

Locally unknotted isotopies
As above, let M,Q be manifolds, with M compact. Let/ : M xI^QxI

be an isotopy, that is to say a level-preserving embedding. Call/ a proper
isotopy if it is a proper embedding. I f / is a proper isotopy then each level
ft: M ->Q is a proper embedding. If/ is a proper isotopy denote by df the
restriction of/ to the boundaries, df: M xI^-QxI.

Remark. We have to use a different symbol d for the boundary, because
the boundary of/, qua isotopy, is smaller than the boundary of/, qua
embedding; in other words d/#/, although at each level (df)t = (ft)'.

We define / to be a locally unknotted isotopy if
(i) at each level ft: M-+Q is a locally unknotted embedding, and

(ii) for each subinterval J oil the restriction fj : M xJ^-QxJ of/ is a
locally unknotted embedding.

As in the case of embeddings we can deduce that any locally unknotted
isotopy is proper.

COROLLARY 11. If f is a locally unknotted isotopy then so is df.

Proof. Condition (i) for df follows from Corollary 9(i) because
(df)t = (ft)'. To prove condition (ii), let KVK2,K3 be triangulations of
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(M xJ)',M xJ,M xj, and let LVL2,L3 be triangulations of (QxJ)',
QxJ,QxJ, respectively, smch that the restrictions (pi: K^-^h^ i = 1,2, 3,
of/ are simplicial. By condition (ii) for/ and Corollary 9(i), <px is a locally
unknotted embedding, and by condition (i) for / so is <pz. We want to
prove that cp2 is a locally unknotted embedding. Let v be a vertex of K2.
If v is an interior vertex of JiT2 then s~E (v, cp2) = i t (v, 9^), which is unknotted.
If v is a boundary vertex then

Ik (v, <p2) = Ik (v, cpx) - Ik (v, <pz)

= (unknotted sphere pair) — (unknotted ball pair)

= unknotted ball pair, by Corollary 8.

Therefore si (v, (p2) is unknotted. Therefore df is a locally unknotted
isotopy.

The definition of locally unknotted isotopy that we have given
immediately raises two questions:

QUESTION 5. Does condition (ii) imply condition (i) ?

QUESTION 6. If f is an isotopy and a locally unknotted embedding, then
is f a locally unknotted isotopy ?

Equator

FIG. 4

If M is closed then the answer to Question 5 is 'yes' by Corollary 9(i);
but if M is bounded then we may run into Question-3-type trouble at the
boundary, as can be seen from the way we had to use Corollary 8 in the
proof of Corollary 11. In fact if M is bounded then Question 5 is the same
as Question 3; and if M is bounded or closed then Question 6 is the same as
Question 3. For if the answer to Question 3 is 'yes' then it is easy to show
that the answer to Questions 5 and 6 is 'yes'. Conversely, if there is a
counterexample to Question 3 then we can use this counterexample to
manufacture counterexamples to Questions 5 and 6. For instance, suppose
B, C are knotted (q, m) ball pairs with a common boundary B = 0, such
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that B U C is an unknotted sphere pair. Identify Bq, CQ with the northern
and southern hemispheres of the prism A3 x / (i.e. those subsets of the
boundary above and below the equatorial plane t = £; see Fig. 4). If V is
the centre of the prism then V{B U C) is unknotted, but each of VB, VC
is locally knotted at V. We can regard V(B\JC) as an embedding
/ : Am x /-»• A9 x / , and by the trick of ((4) Lemma 4) we can make/level-
preserving in a neighbourhood of the equator. The restriction of/ to this
neighbourhood gives a locally knotted isotopy that is a locally unknotted
embedding.

The justification for the above definition of locally unknotted isotopy
is that it is a sufficient condition for an isotopy to be covered by an
ambient isotopy ((4) Theorem 2); and if/0 is locally unknotted then it is
also a necessary condition.

3. Proofs of the fundamental theorems
This last section consists of the proofs of Theorems 1, 2, and 3. Some

of the lemmas come straight from (11), and in others we follow
Whitehead's style of proof closely.

LEMMA 1. Given X <= M, if X is collapsible then any regular enlargement
of X in M is a ball.

Proof. Let N be the regular enlargement. By ((11) Theorems 4 and 7)
we can choose triangulations J,K,L of M,X,N such that L collapses
simplicially to K, and K collapses simplicially to a point. Then by
((11) Theorem 23, Corollary 1) L is a combinatorial ball, and so N is a
polyhedral ball.

Full subcomplexes

Let L be a subcomplex of K. We call L a, full subcomplex if no simplex
of K — L has all its vertices in L. As a consequence, any simplex of K — L
meets L either in a face or in the empty set.

Example (i). If L is a subcomplex of K, and K' a first-derived complex
of K, then L' is full in K' (see ((11) Lemma 4)).

Example (ii). If L is a full subcomplex of K, and K* an arbitrary
subdivision of K, then X* is full in K*.

Well situated

We introduce a technical term for the convenience of the proof of
Theorem 1. Let J be a combinatorial manifold and K, L finite subcom-
plexes. We say that the pair K, L is well situated in J if the following
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three conditions hold:
(1) K is link-collapsible on L;

(2) K U L and K^ are full subcomplexes of J ;
(3) if A is a simplex in N(K — L,J) — K, then Yk(A,J) meets K in a

simplex (possibly the empty simplex).
We say that K, L is well situated at the boundary if, in addition,

(4) the pair KV\J,LC\J is well situated in j ,
(5) K U j is a full subcomplex of J.

LEMMA 2. Suppose that K, L^J, and let N = N(K — L, J). IfK, L is well
situated in J then N\Kt{. If, further, K, L is well situated at the boundary
then N\Nr\J\jK^\K^; in other words N collapses to K^ admissibly in
the sense of Irwin (5).

Proof. The first part follows from conditions (2) and (3) of well-
situatedness by ((11) Theorem 2). We obtain the second part by refining
Whitehead's proof slightly. His proof goes as follows. Order the simplexes
Ax,..., AT of N that do not meet K$ in some order of decreasing dimension;
by condition (3), for each *, K^ n Ik (Ai} N) is a (non-empty) simplex,
Bi say. The collapse N\.Ki{ is achieved by collapsing AiBi\AiBi in
turn, i = 1,2, ...,r. Condition (2) ensures that we eventually arrive at K^.
For the proof to work it is only necessary that the ordering be such that
each At precedes its faces. Therefore we can re-order so that Alt..., Aq are
in J and Aq+1, ...,Ar are in j . Let

F = K^\JAiBi.
Q+l

Then N\F\Kt{. The lemma will be proved if we show that
F = Nn J\JK).

If CeNnJ then C is contained in some AiBi, i>q, and so
N n j U K^ c= F. Conversely, if i > q then Ai Bt has all its vertices in K U j ,
which is full in J by condition (5), and so AiBieK\jj. But .4^if, and so
AiBiGJ. Hence F^

LEMMA 3. Suppose K,L well situated in J, and let N = N(K — L,J).
Then \N\ is a regular neighbourhood of \K\ mod \L\ in \J\. If, further,
K, L is well situated at the boundary, then \ N \ meets the boundary regularly.

Proof. The proof is by induction on m = dim J, and is analogous to
the proof of ((11) Theorem 22) and ((12) Lemma 6). The induction begins
trivially with m = 0. Assume the lemma for m— 1, and suppose that J is
of dimension m.
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First we show that N is a combinatorial m-manifold, i.e. that the link
of every vertex x in N is an (m— l)-sphere or ball. There are three cases,
depending upon whether x lies in K — L, L^, or N — K.

Case (i). xeK — L. Then Ik (x, N) = Ik (x, J) — sphere or ball.

Case (ii). xeLk. Let J* = \k{x,J), K* = Zn J*, L* = LnJ*. It is
straightforward to verify that (if *)t, = K^ n J* = Ik (x, K§), and hence that
K*,L* is well situated in J*. Therefore Ik {x, N) = N{K* - £*, J*), and so,
by induction on ra,

| Ik (x, N) | = a regular neighbourhood of | K* | mod | L* | in | J* |

= a regular enlargement of | {K*\ | in | J* |

= a ball, by Lemma 1,

because {K*)$ = Ik (a;, K^), which is collapsible by condition (1), since

Case (iii). xeN — K. Let J*,K*,L* be as in the last case. Then K* is
a simplex by condition (3), and so K* is link-collapsible on L*, because a
simplex is link-collapsible on any subcomplex. Also K* meets K — L
because xeN, and so K*^L*. Therefore (K*\ = K*, and hence (K*\
is collapsible. We can verify as in the last case that the pair K*,L* is
well situated in J*; therefore as before Ik (x, N) = N(K* — L*,J*), and so
Ik (x, N) is a ball by induction.

Next we prove that \N\ satisfies the second condition for being a
regular neighbourhood. | N \ is a topological neighbourhood of | K \ — \ L \ in
| J |, because every point of | K \ — \ L \ is in the open star in J of some vertex
in K — L, which is an open set of | J \ contained in | N |. Next we prove that
Nc\L = Li{. For L^ = K^ n L c N n L. Conversely, suppose that A is a
simplex in Nr\L. Since AeL, A does not meet K — L. Therefore AxeJ
for some vertex x in K — L. Since Ax has all its vertices in K u L, and KuL
is full in J by condition (2), we have Ax eKvL. But x $ L. Hence Ax $ L,
and so AxeK-L. Therefore AeK^. Therefore A eK^ n L = L^. Now we
shall prove L^<^$. For given A in L§, write A = xA*, where x is some
vertex of A. In the notation of case (ii) above, Ik(.4,^) = lk(^4*,iV*),
where N* = N{K*-L*,J*). Now A* eL^ n J* = (£*)„, and so, by induc-
tion on m, we have A* in the boundary of N*. Therefore Ik (.4*, i\f*) is aball,
and so A ei^. Hence L^ ̂  j\r. Therefore j ^ ^ISf nL^NnL = Lk. Therefore
there is equality L§ = SnL = Nf\L, and condition (2) is proved.

The third and last condition for |iV| to be a regular neighbourhood is
that N^K^, which comes from Lemma 2.

For the second part of Lemma 3, we assume, further, that K,L are
well situated at the boundary. By what we have already proved, we
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deduce that if Nx = N((K r\J) — (Ln j), j) then | Nx | is a regular neighbour-
hood of \Kr\J\ mod \LC\J\ in \J\. The proof of the lemma will be
completed if we show that

(NnJ)-L = Nv

It AeNx then A eN(x,J) for some a; in (K-L) n j , and

Therefore N-L^NnJ. Conversely, suppose that A e N n J. Then A e N(x, J)
for some xin K — L. Therefore xA has all its vertices in K U J, which is full
in J by condition (5), and so xA eKl)J. Therefore xA lies in either J or K.
If xA e j then A GNV Alternatively, if xA eK then AEK, and so either
AeK — L, whence Ae(K — L)nJ^N1} or else A eL. We have shown that

Therefore Nx — L = (N nJ) -L. But since | Nt \ is a regular neighbourhood
of |Kn J| mod \LnJ\, the interior of N± does not meet L. Consequently
Nx = Nx — L = (NnJ)-L, as desired. The proof of Lemma 3 is complete.

Proof of Theorem 1. We are given a second-derived neighbourhood JV
of X mod Y in M, which we want to show is regular. N is formed by
choosing a triangulation J, K, L of M, X, Y, choosing a second-derived J"
of J, and defining

iV = \N(X-Y,J")\.
Let J' be the first derived of J. Let J* be the first derived of J' mod K' u L';
that is to say we form J* by starring in some order of decreasing dimension
all the simplexes of J ' — (K' U L'), at the same points that were used to form
J". The theorem will then follow from Lemmas 3 and 4 below.

LEMMA 4. (i) N = \N(X- Y,J*)\.
(ii) If X is link-collapsible on Y then K*,L* is well situated in J*.
(iii) // , further, XnM is link-collapsible on Yf)M then K*,L* is

well situated at the boundary,

Proof. First form J** from J* by starring all the simplexes in
L^ — L^* = U — L'^. This process leaves N(X— Y,J*) untouched, because
if A eL' - L\ then A<£N(X - Y, J*) for the following reason.

Suppose not: then there is a vertex x in K' — L' such that xA 6 J*. The
simplex xA has all its vertices in K' U L', which is full in J', because we
have taken first deriveds, and hence is also full in J*. But x$L', and so
xAeK'-L'. Therefore AeK^. Therefore AeK'^nL' = L'k, which is a
contradiction. We have shown that

(iv) N(X- Y,J*) = N(X- 7, J**).
5388.3.14 Zz
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Now star the simplexes in K'^, and form J" from J**. Let B denote a
typical simplex in K' — U, and S the point at which it is starred. Then

\N{X-Y,J**)\ = [J\N{B-B,J**)\
B

B

= N.
This combined with (iv) proves (i).

Proof of (ii). Condition (1) of well-situatedness is true by hypothesis.
Condition (2) is true in J' and remains true in J*. Condition (3) is true in
J** by ((11) Lemma 4), and remains true in J* by (iv).

Proof of (iii). Since (J*)' = (j)*, condition (4) follows from (ii) applied
to the boundary. Condition (5) is already true in J' and remains true in
J*. The proof of Lemma 4 and Theorem 1 is complete.

For the proofs of Theorems 2 and 3 we shall need a lemma about
isotopies of balls.

LEMMA 5. Let P^Q^R be a nest of three m-balls, whose boundaries all
meet in a common (m— I)-face F. Then there exist

(i) an isotopy in Q moving P onto Q and keeping F fixed, and
(ii) an ambient isotopy of R moving P onto Q keeping Jk fixed.

Proof. The set-up is homeomorphic to a standard set-up in which
P^Q^R are m-simplexes with a common (m— l)-face F, with the vertex
p of P opposite F at the barycentre of Q, and the vertex q of Q opposite F
at the barycentre of R. Therefore it suffices to prove the lemma for the
standard set-up.

In the standard set-up there are obvious isotopies by straight-line paths,
but these are not in the category in which we are working, since they are
piecewise algebraic rather than piecewise linear (see the footnote to the
proof of ((4) Lemma 5)). However, we can define piecewise-linear isotopies
as follows. In case (i), represent P x / as a cone with vertex pxl and base
P x 0 U F x I, and in case (ii) represent R x I as a cone with vertex pxl
and base Rx 0U&xI. To obtain the isotopy PxI->QxI in case (i),
and the ambient isotopy RxI-^-RxI in case (ii), map the base of the
cone by the identity, map the vertex p x 1 to q x 1, and join linearly.

Kernels
For the proofs of Theorems 2 and 3 we introduce the technical term

'kernel'. The idea is to construct a second-derived neighbourhood inside
a given regular neighbourhood, with respect to a triangulation in which
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the given neighbourhood collapses simplicially, as in the proof of
((11) Lemma 11).

More precisely, suppose that -X" is link-collapsible on Y, and let N1 be a
given regular neighbourhood of X mod Y in M. A kernel N of Nx is
constructed as follows. Choose a triangulation J, K, L, G of M, X, Y, N
such that G collapses simplicially onto ^ , by ((11) Theorem 7). Choose a
second derived J" of J, and define N = \N{X- Y,J")\. If, further, M is
bounded, and XoM is link-collapsible on Yf)M, and N± meets the
boundary regularly, then we impose the additional restriction on N that
(NnM)— Y be also a kernel of (iV^nil̂ )— Y; this can be done by sub-
dividing J if necessary (see ((11) Theorems 4 and 7)).

Remarks.
(i) The kernel N is a regular neighbourhood of X mod Y in M (by

Theorem 1).
(ii) If X n M is link-collapsible on Y n M, then N meets the boundary

regularly (by Theorem 1).
(iii) N is smaller than N1} because N1^\N(X— Y, J)\, which contains a

neighbourhood of N — Y in M.
(iv) If Nv N2 are two given regular neighbourhoods, we can choose N

to be a kernel of both (again by ((11) Theorems 4 and 6)).

LEMMA 6. Suppose X link-collapsible on Y in M. Let Nx be a regular
neighbourhood of X mod Y in M, and let N be a kernel of Nv Then there
exists an increasing sequence of regular neighbourhoods of X mod Y in M,

N = U0<=U1s:...cU2r = N1,
such that, for each i,

where Bi is an m-ball (m = dim J¥ ) , and Fi an (m— \)-ball facing B^

Proof. The proof is similar to that of ((11) Lemma 11). With the same
notation that was used in defining the kernel, we have G\K^ simplicially.
Let AX,A%, ...,AZr be the simplexes of G — K^, arranged in such order that
the simplicial expansion K^/G is obtained by first adding Ax and its
face A%, then adding Az and its face A±, and so on. Let Ai be the point at
which Ai is starred to form J', and let Bi be the m-ball

Bi = \N(Ai,Q')\.
Define, inductively, V^ = ^_ ! U Bt, UQ = N. Then the intersection
Ut_x n Bt = Ui-x H Bi is an (m — l)-ball by the proof of ((11) Lemma 11).

It remains to show that each TJi is a regular neighbourhood of X mod Y.
By induction JJi is an m-manifold. The second condition for being a
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regular neighbourhood is satisfied because C/̂  lies between two other
regular neighbourhoods, N^U^N^ Finally Ui\Xti because

N, = U2r\U2r_1\...\U0 = N\Xk.

The proof of Lemma 6 is complete.

Proof of Theorem 2. We are given two regular neighbourhoods N1} 2V2 of
X mod Y in M, where X is link-collapsible on Y. Choose a kernel N of
Nx and N2, and a kernel N3 of N. We have to prove that there exists an
isotopy in M moving Nx onto N2 through a continuous family of regular
neighbourhoods, keeping N3 fixed.

Let XJi be as in Lemma 6. For each i, 1 ^i^2r, we shall construct an
isotopy

ftiU^xI+UtxI

in Vi moving t^_x onto Ĉ  through a continuous family of regular
neighbourhoods (of X mod Y in M), and keeping 2V3 fixed. The
composition

gives an isotopy in M moving N onto N± keeping N3 fixed. Similarly there
is an isotopy moving N onto JV2>

 a n ( i ^n e reverse of the former followed by
the latter gives what we want.

FIG. 5

It remains to construct the isotopy /^ Suppose therefore that i is fixed,
and consider the face Fi of the ball Bi} of Lemma 6. We claim that F€ does
not meet N3. For since N3 is smaller than N, N contains a neighbourhood
of JV3- Y in M. Therefore Ft, cM-N, does not meet iV3- Y. Hence
.F4 n .W8 = JJ n Y. Now F^N^ and Nx does not meet 7 by the second
regular-neighbourhood condition. Therefore Ft n N3 = ^ n Y^Nxn 7 = 0 .
Consequently i^niVgSi^, and so J^ is link-collapsible on J^ui^ , because
a ball is link-collapsible on its boundary.

Let Ci be a regular neighbourhood of Ft mod J^ U ^ 3 in C _̂x (see Fig. 5).
Since Ĉ  is a regular enlargement of Fi} it is an m-ball by Lemma 2,
meeting J5̂  in the common face Ft.
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By Lemma 5 there is an isotopy in i^uC^ moving Ci onto i^uC^, and
keeping Ci - fi fixed. Extend this by the constant isotopy on C _̂1 - Ĉ  to
the required isotopy in JJi moving Ĉ _x onto U^ and keeping Na fixed. At
each stage of this isotopy, the image is a regular neighbourhood, because
it is a manifold, lies between two other regular neighbourhoods, and
collapses to X$ by the image of the collapse t^-iX-X^. The proof of
Theorem 2 is complete.

The proof of Theorem 3 will be a development of that of Theorem 2 in
three stages: in Lemma 7 we make the isotopy ambient in the case when
M is unbounded; in Lemmas 8 and 9 the bounded case is dealt with; and
finally we move the smaller neighbourhood that is to be kept fixed during
the isotopy from thesis to hypothesis. Recall the statement of the
theorem:

Hypothesis of Theorem 3. Suppose that X is link-collapsible on Y, and
I n M link-collapsible on T'nM. Let N1}N2,NS be three regular neighbour-
hoods of X mod Y in M, meeting the boundary regularly, and such that N3 is
smaller than Nx and N2. Let P be the closure of the complement of a second-
derived neighbourhood of Nx U N2 mod Y in M.

Thesis of Theorem 3. There exists an ambient isotopy of M moving N± onto
N2 and keeping N3uP fixed.

For the next three lemmas, Lemmas 7, 8, and 9, we assume the
hypothesis of Theorem 3, and make the following construction: let N be a
kernel of N± and N2, and let N^ be a kernel of N and N3.

LEMMA 7. Suppose M unbounded. Then there exists an ambient isotopy
of M moving N onto N1} keeping N^uP fixed.

Proof. The proof is an addendum to the proof of Theorem 2. Using the
same notation (with the proviso that for N3 now read N4), we show that
the isotopy moving Ut_x onto C/̂  can now be realized by an ambient
isotopy of M keeping N^ U P fixed. The composition of these ambient
isotopies for i = 1,2,..., 2r will give the required isotopy for Lemma 7.

Continuing with the same notation, let

which is an (m— l)-ball facing the m-ball B^ We claim that Ei does not
meet P. For E^N^ therefore E^Y^E^N^Y = E^Y^ by the
second regular-neighbourhood condition, and EinY^^EinUi_1=iJi.
Hence ^ c i ^ — J . But by hypothesis M — P is the interior of a
second-derived neighbourhood of NX^N2 mod Y in M, and therefore

We have verified the claim that Ei does not meet P.
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Therefore Ei is link-collapsible on 2^ u P, because a ball is link-collapsible
on its boundary.

Let Di be a regular neighbourhood of Ei mod 2^ U P in M-JJi (see Fig. 6).
Then Di3 being a regular enlargement of the ball Ei} is an m-ball meeting
Bi in the common face E^

FIG. 6

Let ^ - BiUQuDi, which is an m-ball whose interior does not meet
N4 U P, by construction. By Lemma 5 there is an ambient isotopy of Ht

moving Ci onto Bi U Ci} and keeping 6t fixed. Extend this by the constant
isotopy of M\Hi to the required ambient isotopy of M moving Ui_1 onto
Ut, and keeping JV4 u P fixed. The proof of Lemma 7 is complete.

LEMMA 8. Suppose that M is bounded. Then Nx collapses admissibly to
X^, i.e.

Proof. Since N is a kernel of Nv NX\N by Lemma 6. Since N is a
second-derived neighbourhood, iV\ iV n J ^ l l X ^ X^ by Lemmas 2 and
4(iji). We shall produce a homeomorphism h of Nx onto itself, throwing
NnM onto JVi n M, and keeping Zj, fixed. Then the image under h of the
collapse NX\NnMUX^\X^ will give what we want.

Let M* = N1} X* = XnM*, Y* = 7n.M*5 Nf = {N^M^-Y, and
r. Then, although X*^XnM and 7*#7niir in

general, it is nevertheless true that

because

= X*-Y* = (X-Y)nfil = (X-Y)nM
= (XnM)-(YnM) =.{Xr\M\,

and
(7*)t, = (X*\n 7* = (Xn J^n^nify
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Therefore by the hypothesis of Theorem 3 and the construction of N, it
follows that Nx* is a regular neighbourhood of X* mod 7* in M*, and N* is
a kernel of JV̂ *. Since M* is closed we can apply Lemma 7 to each
component of M*, and obtain an ambient isotopy/* of M* moving N*
onto Nx*, and keeping X* fixed. We wish to extend / * to an ambient
isotopy of Nv at the same time taking care not to move X^.

Now / * is the composition of a finite number of isotopies /+*,
i = 1,2,..., 2r, where/j* is an ambient isotopy of M* keeping everything
fixed except an (m — l)-ball H^, whose interior does not meet X* and hence
does not meet X$. Therefore H^ is link-collapsible on Ht* U X$. Let Ht be
a regular neighbourhood of H^ mod Af U X^ in Nv Then Hit being a
regular enlargement of Hf, is an m-ball meeting Nx in the face Hf. Hence
Ei is homeomorphic to a cone on Hf (the homeomorphism keeping Hf
fixed), and so the ambient isotopy ft* \ H{* of Hf can be extended conewise
to an ambient isotopy /^ of i^ keeping Hi — H^ fixed. Extend fi to an
ambient isotopy of N1} fixed outside Ht. Let /be the composition of the fit

i = 1,..., 2r. By our construction, / is an ambient isotopy of Nx moving N*
onto Nj* (since it is an extension of/*), and keeping X§ fixed.

Now 7* = 7t, cX^, and so / keeps 7* fixed. Therefore / moves N n M
onto NxnM because Nn M = N* u 7* and NxnM = Nx* u 7*. Conse-
quently the end of the isotopy / gives the homeomorphism h that we want,
throwing N n M onto Nx n M and keeping X^ fixed. The proof of Lemma 8
is complete.

LEMMA 9. Suppose M bounded. Then there exists an ambient isotopy
of M moving N onto IVj and keeping N^liP fixed.

Proof. The lemma is the 'bounded' analogue of Lemma 7, and, as in the
proof of Lemma 7, we construct for each i an ambient isotopy of M
moving Ui_1 onto Ui} keeping iV4 u P fixed. The boundary is a potential

o

source of trouble, because if, for some i, it happened that B^M = Bi — Fi}

then an ambient isotopy would be impossible: we should have to push a
bit of M off the boundary, as it were. The trouble is precisely what does
occur if a non-admissible collapse NX\X^ is used in Lemma 6 to construct
the sequence of U^s, and it was to avoid this contingency that we proved
the existence of an admissible collapse in Lemma 8.

More precisely, if the admissible collapse of Lemma 8 is used to define
the ordering A1,A2,...,A2rof the simplexes in the proof of Lemma 6, then
there exists a q such that
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If i > q, then Bi <= M, because Bi is the closed star, in a second derived, of
an interior vertex in a first derived, of a triangulation of M. Therefore
we can proceed to define the ambient isotopy as in Lemma 7. If i ^ q, then
Bt meets M, and we proceed as follows.

For the rest of the proof of this lemma we use the superscript star to
denote intersection with M, U^ = Ĉ  n Jfl, etc. Then Bt* is an (ra— l)-ball
facing Bi} and meeting Fi in the common (ra — 2)-face Ft*, and such that

Ut* = a*uBS, F<* = K * n 5 4 * .
o

Let ^ denote the (m —2)-ball Ji = Fi — Ff, with boundary the (m —3)-
sphere J^.

M

FIG. 7

As in the proofs of Theorem 2 and Lemma 7, we can show that
^ n ^ u P J c J ^ and so Bi is link-collapsible on J ^ u i ^ u P , and Bt* is
link-collapsible on Ji*uiV4*uP*. Let ^ be a regular neighbourhood of
Bi mod Ji U N± U P in M that meets the boundary regularly (such exist by
Theorem 1). Then ^ is an m-ball meeting M in the face H*, which is a
regular neighbourhood of Bt* mod Ĵ * U N4* U P* (by definition of meeting
the boundary regularly). See Fig. 7. Therefore the pair Hi,Bi is homeo-
morphic to the cone on the pair J^*,!^*, the homeomorphism keeping
Hf^f fixed. By Lemma 5 there is an ambient isotopy of Hf, fixed on
the boundary, and moving t / ^ n i ^ * onto C^nfi^*. We can extend this,
first cone wise to an ambient isotopy of Hit and then by the constant
isotopy on the complement, to an ambient isotopy of M, moving Ui_1 onto
Uj, and fixed outside H^ The proof of Lemma 9 is complete.

Proof of Theorem 3. Lemmas 7 and 9, applied to both JV̂  and N2, give an
ambient isotopy / of M moving Nx onto N2 and keeping i\74 U P fixed.

Let N5 be a kernel of N^, and let P' = M - {Nx n N2). Now N^ is a kernel
of Nz, and P' is contained in the closure of the complement of a second-
derived neighbourhood of N3 mod Y in M, because 2V3 is smaller than
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Nt and N2. Therefore we can appeal to Lemmas 7 and 9 to obtain an
ambient isotopy of M moving N^ to iV3, and keeping N5 U P' fixed. In
particular, the end of this isotopy furnishes a homeomorphism hoiM onto
itself, throwing N± onto iV3, throwing Nx onto itself and N2 onto itself,
and keeping P fixed. The image of / under h, or, more precisely, the
composition

M x /^><L.M x I—L+ M x I-m+ M x I,

gives the ambient isotopy of M that we want, moving Nx onto N2, and
keeping i ^ u P fixed. The proof of Theorem 3 is complete.
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