
ON COMBINATORIAL ISOTOPY 

by J. F. P. H U D S O N  and E. C. ZEEMAN 

We define four types of isotopy and show them to be equivalent under suitable 
conditions of local unknottedness. In particular they are equivalent whenever the 
codimension is >/3. 

We shall work in the category of polyhedral manifolds and piecewise linear 
embeddings. All spaces and maps will be in this category unless otherwise stated. 
By a polyhedral (or piecewise linear) manifold M we mean a topological manifold together 
with a piecewise linearly related family of triangulations; each triangulation is a 
combinatorial manifold, that is to say a finite or countable simplicial complex in which 
each closed vertex star is a combinatorial ball. We shall consider embeddings of a 
compact m-manifold M in a q-manifold Q ,  which may or may not be compact. The 

manifolds may or may not be bounded; denote by l~i the boundary of M, and by l~I 

the interior of M. An embedding f : M-+ Q is called proper if f - lQ=  1(/I. In particular 
if M is closed (compact without boundary) then any embedding of M in the interior 
of Q is proper. In  this paper we shall confine our attention to proper embeddings 
of M in Q ,  and the generalisation of the results to r~on-proper embeddings will be 
considered in a subsequent paper [2] by one of us. 

Definitions of isotopy. 

I) By a homeomorphism h of M we mean a homeomorphism of M onto itself. 
In particular h is a proper embedding. I f  Y is a subset of M such that h 1 Y = t h e  
identity, then we say h keeps Y fixed. 

2) Let I denote the unit interval. An isotopy of M in Q is a proper level 
preserving embedding F : M •  I - + Q •  I. 

Denote by F~ the proper embedding M - + Q  defined by F(x,t)=(Ftx, t), 
all xEM. The subspace U FtM of Q i s  called the track left by the isotopy. If  Y c M ,  

tGI 
we say F keeps Y fixed if F(x, t)=F(x, o), for all x e M  and tEI. 

3) The embeddings f , g  : M - + Q  are isotopic if there exists an isotopy F of M 

in Q with F0=  f and F l = g .  
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4) An ambient isotopy of Q is a level preserving homeomorphism 
such that  H 0 = t h e  identity, where as above H t is defined by 
for all x e Q .  We say that  H covers the isotopy F if the diagram 

e i  I " ~  e •  
Foxl  /~FF 

M x I  

H : Q • 2 1 5  
H(x, t ) =  (Htx , t), 

is commutat ive;  in other words F t=HtF0,  for all te l .  
5) The  embeddings f ,  g : M  ~ Q .  are ambient isotopic if there exists an ambient  

isotopy H of Q such that  Hi f =  g. 
Remark. - -  I f  M = Q ,  then a proper embedding M • 2 1 5  I is the same as 

a homeomorphism Q •  I - + Q •  Therefore, since we have restricted attention to 
proper embeddings, the only difference between an isotopy of Q in 0.2. and an ambient  
isotopy of Q is that  the latter has to start with the identity; consequently two homeo- 
morphisms of Q are isotopic if and only if they are ambient  isotopic. 

6) A homeomorphism or ambient  isotopy of Q. is said to be supported by X if it 

keeps Q - - X  fixed. By continuity the frontier X n ( Q - - X )  of X in Q must also be 
kept fixed. 

7) An interior move of Q is a homeomorphism of Q supported by a ball, keeping 
the boundary of the ball fixed. A boundary move of Q is a homeomorphism of Q supported 

by a ball that  meets (~ in a face. ( A f a c e o f a  q-bal lB is a (q- - i ) -ba l I  inl~) .  I n a  
boundary  move the complementary  face is the frontier that  is kept fixed by continuity. 

8) The  embeddings f ,  g : M - ~ Q  are isotopic by moves if there is a finite sequence 
ha, h2, . . . , h ,  of moves of Q s u c h  that  hlh ~ . . . h " f = g .  

9) A standard interior linear move is a homeomorphism A ~ A  of the standard 

simplex A, defined by mapping  zX by the identity, mapping  the barycentre to another  
interior point, and joining linearly. A standard boundary linear move is a homeomorphism 
A ~ A  defined by mapping a vertex to itself, mapping  the opposite face by a standard 
interior linear move, and joining linearly. 

I o) A linear move of Q is a move h supported by a ball B, for which there exists a 
homeomorphism k : B ~ A  such that  khk - I  is a s tandard linear move. 

i I) The  embeddings f ,  g : M - + Q  are isotopic by linear moves if there exists a finite 
sequence hi, h~, . . . ,  h n of linear moves of Q such that  bah 2. . .  h , f = g .  

Lemma x (Alexander [I]). - -  Any homeomorphism of  a ball keeping the boundary f ixed 

is isotopic to the identity keeping the boundary fixed. 
Proof. - -  Since a ball is homeomorphic  to a simplex, it suffices to prove the lemma 

for a simplex A. Given h : A-~A, construct H : A • 2 1 5  as follows. 
Let 

H(x, t) -= I hx, t-~ o, 
X, t ~ I o r  X ~ s  ( 
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This defines a level preserving homeomorphism of the boundary of the prism A • I;  
complete the definition of H by mapping the centre of the prism to itself, and joining 
linearly to the boundary.  The resulting homeomorphism is also level preserving and 
piecewise linear, and so is an isotopy from h to the identity. 

Corollary. - -  Any homeomorphism of a ball keeping a face f ixed is isotopic to the identity 
keeping the face fixed. 

Proof. - -  Let A be an n-simplex, v a vertex, and F the opposite face. Given an 
n-ball and a face, then there is a homeomorphism of the ball onto A throwing the face 

onto vP. Therefore it suffices to prove the Corollary for the special case of a homeo- 

morphism h of A keeping vF fixed. Since hi r keeps I' fixed, the lemma gives an 

isotopy G, say, of P keeping I' fixed from h IF to the identity. Define H on the 

boundary of the prism A • I by 
l hx, t ~ o, 

H ( x , t ) =  x, t = x  or xevI' ,  
G(x, t), x e r .  

Then extend H to the prism as in the lemma. 

Description of  results.  

Using Lemma i and its Corollary, we can deduce at once that: 

f ,  g isotopic by linear moves 
1) (~) 

f ,  g isotopic by moves 

f ,  g ambient isotopic 

f ,  g isotopic. 

Our  purpose is to show in Theorems I, 2 and 3 that the arrows I), 2) and 3) can 

be reversed. Therefore all four definitions are equivalent. At the top we have the 
elementary intuitive idea of pushing the vertices of a complex around Euclidean space; 

at the bot tom is the definition of isotopy natural to the category. 
To prove step 2), the covering isotopy theorem, it is obviously necessary to impose 

a local unknottedness condition on the isotopy. For otherwise the knots of classical 
knot theory give counterexamples of embeddings that are mutually isotopic but  not 
ambient isotopic. However, as we shall see, this phenomenon occurs only in codi- 

mension 2, and possibly in codimension I. 

Question. - -  Can we extend the equivalence further ? For instance can we drop 

the level preserving condition ? More precisely, call two maps pseudo-isotopic if they 
are isotopic by an ~ isotopy )~ that is level preserving for t = o, I but  not necessarily 

71 



7 2 J . F . P .  H U D S O N  AND E. C. Z E E M A N  

for o < t <  I. In codimension 2 pseudo-isotopy is essentially weaker than isotopy, because 
for example slice knots can be unknotted by a smooth pseudo-isotopy. But is pseudo- 
isotopy equivalent to isotopy in codimension >/3 ? 

Local nnkuottedness.  

A ball pair (B q, Bin), q>m, is a pair of balls with B'r  properly. A ball pair 
is unknotted if it is homeomorphic to the standard pair (ZA, A), where A denotes the 
standard m-simplex and Z denotes (q - -m) - - fo ld  suspension. 

Given a proper embedding f :  M ~ Q  between manifolds, we say f is locally 
unknotted if, for some (and therefore for any) triangulations K, L of M, Q such that 
f :  K - + L  is simplicial, the (1)ball pair 

(~(fv, L),f (~(v,  K))) 

is unknotted for each vertex v E K. If  f is locally unknotted then so is the restriction 

o f f  to the boundaries f :  l~I-+(~ (see [4, Corollary 5])- 

We say that an isotopy F : M • 2 1 5  is a locally unknotted isotopy if 

(i) each level F~ : M - + Q  is a locally unknotted embedding, and 

(ii) for each subinterval J c I ,  the restriction F : M • 2 1 5  is a locally unknotted 
embedding. I f  F is a locally unknotted isotopy, then so is the restriction to the 

boundaries F : IVI•215 (see again [4, Corollary 5]). 

Lemma 2 (Zeeman [8]). - -  Any ball pair of codimension >t3 is unknotted. 

Corollary. - -  Any proper embedding or isotopy of manifolds of codimension >1 3 is locally 
unknotted. 

Knots exist in codimension 2, and possibly in codimension I, depending upon the 
unsolved state of the combinatorial Sch6nflies conjecture. Therefore when we say 
" locally unknotted " in future we refer only to the cases of codimension I or 2. 

Remark. - -  The above definition of locally unknotted isotopy is tailored to our 
needs. There is an alternative definition of a locally trivial isotopy as follows (see [3]). 
An isotopy F : M •  is locally trivial if, for each (x, t ) ~ M •  there exists an 
m-ball neighbourhood A of x in M and an interval neighbourhood J of t in I, and a 

commutative diagram 

A x J  c> 2 A x J  

F 
M X I  > Q •  

(1) We use the notation st(v, K) for the open star of a vertex v in a complex K, and ~(v, K) for the closed 
star. I f  K is a combinatorial m-manifold then the closed star is an m-ball. 
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where Z denotes ( q - - m ) - - f o l d  suspension, and G is a level preserving embedding onto 
a neighbourhood of F(x, t). It is easy to verify that 

F is a locally trivial isotopy 
1) (1) 

F is a locally unknotted isotopy 
~} (zl 

F is an isotopy and a locally unknotted embedding. 

It  is an immediate corollary of Theorem 2 and Addendum 2. I below that the arrow (i) 
can be reversed. Therefore a locally trivial isotopy is the same as a locally unknotted 
isotopy. We conjecture that the arrow (~) can also be reversed; it is a problem involving 
the unique factorisation of higher dimensional sphere knots of codimension 2, which is 

another unsolved problem (see [4])- 

Statement  o f  the T h e o r e m s .  

Theorem x. - -  Let h be a homeomorphism of Q isotopic to the identity by an isotopy with 

compact support keeping a subset Y fixed. Then h can be expressed as the product of  a finite number 

of  moves keeping Y fixed. 

Addendum i . x .  - -  Given an arbitrary triangulation of  Q ,  we can choose the moves to be 

supported by the vertex stars. Therefore the moves can be made arbitrarily small. 

Addendum x. ~,. - -  Let H be an ambient isotopy of  Q (not necessarily with compact support) 

and let X be a compact subset of Q .  Then there is a .finite product h of moves such 

that H I l X = h I X .  
Corollary x . 3. - -  The following three conditions between embeddings of  a compact manifold M 

in Q are equivalent : 

(i) ambient isotopic ; 
(ii) ambient isotopic by an ambient isotopy with compact support; 

(iii) isotopic by moves. 

Remark. - -  For Corollary 1.3 it is not necessary that the embeddings be either 
proper or locally unknotted. In  fact the corollary is true not only for embeddings but 

for arbitrary maps M - + Q .  
Corollary I .  4. - -  Let M be compact, let f :  M ~ Q  be a proper locally unknotted embedding, 

and let g be a homeomorphism of  M that is isotopic to identity keeping ~r fixed. Then g can be 

covered by a homeomorphism h of  Q keeping (D f ixed;  in other words the diagram is commutative : 

h 
Q 

,T ,T 
g 

M ~ M  

73 
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Remark. - -  In fact Corollary I .4 is improved by Theorem 2, to the extent of 
covering not only the homeomorphism but  the whole isotopy. However we need to 
use Corollary i .  4 in the proof of Theorem 5, in the course of proving Theorem 2. 

Theorem 2 (Covering isotopy theorem). - -  Let M be compact, and let F : M •  I - + Q •  I 

be a locally unknotted isotopy keeping IVl fixed, and let N be a neighbourhood of  the track left by 

the isotopy. Then F can be covered by an ambient isotopy of  Q supported by N keeping (~ fixed. 

Addendum 2. I. - -  Conversely i f  F 0 is locally unknotted and F can be covered by an ambient 

isotopy then F is locally unknotted and locally trivial. 

Addendum 2.2.  - -  Let X be a compact subset of (~, and N a neighbourhood of  X in Q .  

Then an ambient isotopy of Q supported by X can be extended to an ambient isotopy of  Q 

supported by N. 

Corollary 2. 3. - -  Theorem 2 remains true i f  the words " keeping ~vI f ixed " are omitted 

from the hypothesis and " keeping (~f ixed  " from the thesis. 

Corollary 2. 4. - -  I f  the codimension is >13, then any isotopy Of M in Q can be covered by 

an ambient isotopy of  Q .  
Remark. - -  The covering isotopy theorem can be generalised by replacing the unit 

interval I by a simplex A of arbitrary dimension (see a subsequent paper by one of us [3]). 
The statement is as follows. Let o denote the first vertex of A. Given a proper locally 

trivial embedding F such that the diagram 

MxALQxzX 
\ / 

A 

is commutative, where n denotes projection onto the second factor, then there exists 

a homeomorphism H such that the diagram 

H Q •  Q •  
\ / 

A 

is commutative, H o = I  and F t = H , F  o all teA, where Ft, H, are defined by 

F(x, t) = (Fex, t), H(y ,  t) = (nty,  t) all xeM,  y e Q ,  teA. 

The proof is a generalisation of the proof of Theorem 2, and the main idea is the 

use of collars, as in Lemma 8 below. 

Theorem 3. - -  Let M be compact and let f ,  g : M - + Q  be proper embeddings that are 
locally unknotted and ambient isotop#. I f  the codimension b > o, then f ,  g are isotopic by linear 

m o v e s .  

Corollary 3. I. - -  I f  M is compact and the codimension >13, then the four definitions of 

isotopy are equivalent. 
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Remark x. - -  Notice the restriction codimension > o that occurs in Theorem 3, 

but  not in Theorem I nor in Corollary 1.3. Our  proof" of Theorem 3 breaks down 
when M = Q ,  and leaves unsolved the question: is a homeomorphism of a ball that keeps 
the boundary fixed isotopic to the identity by linear moves ? Possibly the answer is no, due to 
an obstruction. Recent results of Kuiper [5] indicate that such an obstruction might 
be related to the obstructions to smoothing manifolds. 

Remark 2. - -  We have phrased our theorems in polyhedral rather than combinatorial 
terms, because we are working in the polyhedral category. In other words we have 
assumed the embeddings to be piecewise linear, but  without reference to any specific 
triangulations of  either of the manifolds concerned. O f  course it is impossible to define 
any useful form of isotopy by linear maps between fixed triangulations of both M and Q ,  

because this has the effect of trapping M locally, and preventing the movement of any 
simplex of M across the boundary of any simplex of Q. This basic error of definition 

can be found for example in [6, page I7] or [7, page 227]. The error arises from genera- 
lising the special case of when Q is Euclidean space, for which there is a more 
combinatorial notion of isotopy by virtue of the linear structure of Euclidean space. 
The manifold M is given a fixed triangulation, K say, and the isotopy is defined by moving 

the vertices of K. At each moment the embedding of M is determined by the positions 
of the vertices of K, and by the linear structure of Euclidean space. Under  our 
hypothesis Q has only a piecewise linear structure, not a linear structure, and so the 

positions of the vertices of K do not determine a unique embedding of M. However,  
our proof of Theorem 3 does furnish a much stronger statement in terms of moves that 
are linear with respect to a fixed triangulation K of M, which we now state. For simplicity 
of statement we assume M closed, although the technique can be adapted to include 

the bounded case. 

L i n e a r  m o v e s  w i t h  r e s p e c t  t o  a t r i a n g u l a t i o n .  

Let A q be the standard q-simplex, and A '~ an m-dimensional face, q>m. Let x 
be the barycentre of M, andy  a point between x and the barycentre of Am. Let a : Aq --~M 

be the standard interior linear move throwing x to y. 
Let M be closed, let K be a triangulation of M, and let f ,  g be proper embed- 

dings M--~Q. We say there is a movefromf  to g that is linear with respect to K if the 

following occurs : 
There is a closed vertex star of K, A = ~ ( v ,  K) say, and a q-ball B c Q ,  and a 

homeomorphism h : B--~Aq such that 

(i) f ,  g agree on K - - A ,  

(ii) A = f - I B = g - I B ,  
(iii) the composition hf maps the link of v in K homeomorphically onto A", maps v to x, 

and maps A by joining linearly, 

(iv) g l A = h - t ~ h (  f l A ) .  
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We leave the analogous definition for the bounded case to the reader. 
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Addendum 3.2 .  - -  Let M be closed, and let K be an arbitrary f ixed triangulation of M.  

Let f ,  g : M - + Q  be proper embeddings that are locally unknotted and ambient isotopic. I f  
codimension > %  then J; g are isotopic by interior moves that are linear with respect to K.  

The addendum becomes surprising if we imagine embeddings of a 2-sphere in 
a manifold, and choose K to be the boundary of a 3-simplex, with exactly 4 vertices. 
Then we can move from any embedding to any other isotopic embedding by assiduously 
shifting just those 4 vertices linearly back and forth. All the work is secretly done by 
judicious choice of the balls, or local coordinate systems in the receiving manifold, in 

which the moves are made. 
The rest of the paper consists of the proofs of the above theorems in the order 

stated. 

P r o o f  o f  T h e o r e m  x. 

We are given an ambient isotopy H : Q •  I ---~Q• I with compact support, and 
have to show that H 1 is a composition of moves. We first prove the theorem for the 
case when Q is a compact combinatorial manifold, that is to say Q has a fixed triangu- 
lation and is embedded as a finite simplicial complex in some Euclidean space E ". 
Then Q •  I is a cell complex in En• I. We regard E '~ as horizontal and I as vertical. 

Let K, L be subdivisions of Q •  I such that H : K - + L  is simplicial (in fact a 
simplicial isomorphism). Let A be a principal simplex of L, and B a vertical line element 
in A. Define 0(A) to be the angle between H- I (B)  and the vertical. Since H : K - + L  
is simplicial, this does not depend upon the choice of B. Since H is level preserving, 

0(A)< ~. Define 0 = max 0(A), the maximum taken over all principal simplexes of L. 
2 

Then 0 < - .  
2 

Now let .~ denote the set of all linear maps Q - ~ I  (i.e. maps that map each simplex 

of Q linearly into the unit interval I). Let 

~n ={fE .~ ;  m a x f - - - m i n f <  S}. 
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If  f e ~ ,  denote by f*  the graph o f f ,  given by 

f * - - i •  Q - + Q •  I. 

Then f*  maps each simplex of Q linearly into E"• I. Let q~(f) be the maximum angle 
that any simplex o f f * Q  makes with the horizontal. Given ~>o, there exists 3>o,  
such that i f f e ~  8 then q0(f) <~, for choose ~ sufficiently small compared with i-simplexes 

7~ 
of Q. Choose r  and choose ~ accordingly. 

2 

Now l e t f b e  a map in ~n, and let q be a" point ot' Q. Consider the intersection 
of the arc H-~(q•  I) w i t h f ' Q ;  we claim there is exactly one intersection. 

[O~! 

O 

It )P 

k 

Ixl IqxI 
1. 

O _q 

For since f* is a graph, f* Q separates the complement Q • I - - f *  Q into points 
above and below the graph. If  there were no intersection, then the arc would connect 
the below-point H- l (q ,  o) to the above-point H-l (q ,  I), contradicting their separation. 

z~ 
At each intersection, since ~(f)-t-0<5, the arc, oriented by I, passes from below to 

above. Hence there can be at most one intersection. 
Let p : Q •  I ---~Q denote the projection onto the first factor. Then 

k= pHf*: Q-+Q 

is a I-I map by the above claim, and so is a piecewise linear homeomorphism of Q. 
By the compactness of Q and I, choose a sequence of maps f0, f l ,  �9 �9 f ,  in 38, such 
that f 0 ( Q ) = o ,  f n ( Q ) =  i, and for each i, f i - 1  andf~ agree on all but one, v i say, of 
the vertices of Q. Define k i=pHfi*. Then k 0-~H 0 = t h e  identity, and k n = H  1. 
Define h e = k~ki-21. Then h e is a homeomorphism of Q supported by the ball k i(~ (vi, Q)) ,  
keeping ki(lk(v i, Q)) fixed, and so is a move. Therefore Hl=h, ,h . ,_ l . . .h l ,  which is 
a composition of moves. 

I f  H keeps Y fixed, then H~[Y=H01Y for all t e I ,  and so kilY=k0lY. 
Therefore hilY = the identity for each i; in other words the moves keep Y fixed. This 
concludes the proof for the special case when Qis  finite simplicial complex in Euclidean 

space. 
If  Qis  compact, let K ~ Q  be a triangulation; we have proved the theorem for K, 

and therefore it follows for Q. 
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Suppose now that Q is not compact, but the isotopy has compact support X. 
Let N be a regular neighbourhood of X in Q ,  and let Y0 be the frontier of N in Q. 
Then the ambient isotopy of Qrestricts to an ambient isotopy of the compact manifold N 
keeping Yo fixed, and so by what we have already proved, Hi IN is a composition of 
moves of N keeping Y0 fixed. The moves can be extended by the identity to moves of Q.  
I f  H keeps Y fixed, then the moves of N keep N n Y  fixed, and so the extended moves 
of Q keep Y fixed. The proof of Theorem i is complete. 

P r o o f  o f  A d d e n d u m  x . x .  

Suppose we are given a triangulation K - + Q ;  we have to show that the moves 
can be chosen so as to be supported by the vertex stars of K. Since the moves are 
already supported by the compact support of the isotopy, it suffices to consider the case 
when Q i s  compact, and so K is a finite complex. Let ~ denote the covering of Q •  
by open sets 

--{st(w, K) •  weK}, 

where w runs over the vertices of K. Let X be the Lebesgue number  of the open 
covering H - l ~  of Q •  I. Choose a subdivision K'  of K such that the mesh of the 
star covering of K'  is less than X/2. In the above proof of Theorem I use K'  instead 
of Q ,  and choose ~ with additional restriction that 8<X]2. 

St (v L,K') 

H 

I i 
I I 

St: ('WL,K) 

Continuing with the same notation as in the proof of Theorem I, for each i, the ball 
f~*(~(v~, K'))  is of diameter less than X, and so is contained in H-l(s t (w, ,  K) • I) for 
some vertex wi~K. Therefore the move h~ is supported by 

k,(~(v,, K'))=pHf~*(~(v,, K')) 

C p(st(wi, K) • I) 

=st(w, ,  K). 

In other words each move is supported by a vertex star of K. 
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P r o o f  o f  A d d e n d u m  I .  2. 

We are given an ambient isotopy H (not necessarily with compact support) and 
a compact subset X of Q.  We have to find a product h of moves such that H1 [ X = h l x .  

Choose a triangulation of Q - -  call it by the same name - -  and let Y be the smallest 
subcomplex containing X, and Z the simplicial neighbourhood of Y in Q.  Then Z is 
a finite subcomplex of Q ,  because X is compact. 

Fix t o for the moment,  o~< t0~< i. Let ~ be the set of linear maps f :  Q--~I such 
that f ( Q - -  Z) -- t 0. In particular let f t  ~ denote the map determined by the vertex map 

f v_=t t  , w Y ,  
to, vCY. 

Since each map in ~ is determined by the image of the finite subcomplex Z, we avoid 
he non-compactness of Q ,  and can apply the machinery of the proof of Theorem I to 

find 38 such that if f E ~  8 then 
k = p H f *  : Q - ~ Q  

is a homeomorphism. Let J be the 8-neighbourhood of t o in I. I f  s, t~J, then f , , f e ~ ,  
and the corresponding k,, k t are homeomorphisms of Q.  By the proof of Theorem I, 
the composition h=ktk2 ~ i s ' a  finite product of moves. But by construction 

k t ] X = H t [ X  , and the same for s, and so H,H;-'IH,X----AIHsX. 
Now consider the pairs (s, t), o<~s<t< I, for which the following statement is true: 

there is a finite product of moves h, such that H,H 7 ~ f H~X = h I HsX. We have shown it 
to be true locally. I f  it is true for (r, s) and (s, t) then it is true for (r, t) by composition. 
Therefore by the compactness of I it is true globally, and in particular for (0, i). 
Since H 0 = I ,  this is what we want to prove, H ~ I X = h  Ix .  

P r o o f  o f  C o r o l l a r y  i , 3" 

We have to show the equivalence of (i) ambient isotopic, (ii) ambient isotopic 
by an ambient isotopy with compact support, and (iii) isotopic by moves. (ii) implies (i) 
a fortiori. (i) implies (iii) by Addendum 1.2, for choose X = f M .  Finally (iii) 
implies (ii) by Lemma i and its Corollary. 

P r o o f  o f  C o r o l l a r y  x.  4" 

Given an embedding f :  M - ~ Q ,  the problem is to cover a homeomorphism g 
of M by a homeomorphism h of Q.  Choose triangulations of M, Q -  call them by the 
same n a m e s -  such t h a t f i s  simplicial. We are given that g is isotopic to the identity, and 
so by Addendum I. I we can write g as a composition of moves supported by vertex stars : 

g =gigs. �9 .g~, 

where&is  supported, say, by theba l l  B~=~(v~, M), v~eM. Let B~=~(fv~, Q ) .  Then 
the ball pair (B~,fB~ '~) is unknotted, because f is locally unknotted by hypothesis. 

79 



8o J . F . P .  H U D S O N  AND E. C. Z E E M A N  

Therefore the homeomorphism f g i f - t  of the smaller ball can be suspended to a 

homeomorphism, h i say, of the larger ball. Since g keeps 1VI fixed by hypothesis, the 

move gi keeps B~ fixed, for each i. Therefore the suspended homeomorphism h of 

the larger ball keeps 1~] fixed, and can be extended by the identity to a move h i of Q.  

The composition h = hlh2. . ,  h,, covers g and keeps (~ fixed. 
The proof of Theorem I and its addenda and corollaries is complete. 

Collars .  

Before proving Theorem 2, we first need to prove a couple of theorems about 
collars of compact manifolds. The theorems can be generalised to non-compact 
manifolds, but since we only need the compact versions, we content ourselves with the 
latter because the proofs are simpler. 

Let M be a compact manifold; define a collar of M to be an embedding 

c : 1V I •  

such that c(x, o ) = x  for all xel~l. 
Lemma 3. - -  Any compact manifold has a collar. 
A proof is given, for example, in [8, Theorem 3]. 

Given a collar c of M, and given o < ~ <  I, define the shortened collar c~ :IVI• I ~ M  

by the formula c~(x, t ) = c ( x , ~ t ) ,  for all x~lVi and t~I. 

Lemma 4. - -  The collars c, c~ are ambient isotopic keeping lfcI f ixed. 
Proof. - -  First lengthen the collar c as follows. The image of c is a submanifold 

of M of the same dimension, and so the closure of the complement is also a submanifold, 

with boundary c(l(/I • I). Therefore the latter has a coIlar by Lemma 3, which we 
can add to c to give a collar, d say, of M such that c = dl. Therefore c~ = d~/~. 

2 

Let g :  I--~I be the (piecewise linear) homeomorphism that maps [o, ~], [~, i] 

linearly onto [% ~/2], [~/2, i], respectively. Then g is ambient isotopic to the identity 

by an ambient isotopy, G say, keeping i fixed. Let i X G denote the product ambient 

isotopy of /VI• and let H denote the image of i x G  under d; since i •  keeps 

~i • i fixed, we can extend H by the identity to an ambient isotopy H of M keeping l~I 

fixed. I f  xEl~I and tEI, then by construction 

HK(x,  t) = Hid(x,  t/2) 
= d(x, Gr i t /2 ) )  

= d(x,  t12) 
~- c,(x, t). 

Therefore HlC = c,, and the lemma is proved. 
In Theorem 4 we shall improve upon Lemma 4 and show that any two collars 

are ambient isotopic. But first it is necessary to prove a couple of technical lemmas 
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about constructing isotopies. Lemma 5 is about isotoping a homeomorphism which 
is not level preserving into one which is level preserving over a small subinterval. 
Lemma 6 is about two isotopies which are themselves isotopic. In both lemmas we have 
to be careful that the constructed isotopies are piecewise linear, and not merely piecewise 
algebraic (as for example in [6, page I4] ). 

Notation. - -  Let I~ denote the interval [% e], where o<e~< i. 
Lemma 5. - -  Let X be a compact polyhedron, and f :  X • I~--~ X • I an embedding such 

that f [ X •  istheidentity. Thenthereexists 3, o < 3 < ~ ,  andanembedding g : X x I , - + X x I  

such that : 

(i) g is level preserving in I s. 

(ii) g is ambient isotopic to f keeping X •  i fixed. 

(iii) I f  Y is a subpolyhedron of X such that f [ Y  • I~ is already level preserving, then we can 

choose g to agree with f on Y X I~ and the ambient isotopy to keep f ( Y  • I,) fixed. 

Proof. - -  Let K, L be triangulations of X •  X x I  such that f :  K - + L  is 
simplicial (in fact a simplicial embedding). Choose 3, o<~<~ ,  so small that no vertices 
of K or L lie in the interval o<  t~< 3. This is possible because K, L are finite complexes, 
since X is compact. Choose first derived complexes K1, L1 of K, L according to the 
rule: if the interior of a simplex meets the level X • 8 then star the simplex at a point 
on X • 3; otherwise star it barycentrically (the derived complex is formed by starring 
all the simplexes in some order of decreasing dimension). Let g : K I - + L 1  be the 
derived map o f f .  Notice that f ,  g agree on any simplex not meeting the level X •  
if a simplex of K does meet the level X X3, then, although it has the same image 
under f ,  g setwise, the two maps of the simplex in general will differ pointwise. We 
verify the three properties. 

Property (i) holds because by construction g is level preserving at the levels o 
and 3, and any point in between these two levels lies on a unique interval that is mapped 
linearly onto another interval, both intervals beginning (at the same point) in X •  

and ending in X•  
To prove property (ii I define another first derived complex L 2 of L by the rule : 

if a simplex of L lies i n f K  then star it so that f :  KI--*L~ is simplicial; otherwise star 
it barycentrically. Then the derived map KI -+L 2 is the same as f .  Now the 
isomorphism L2-+L 1 between two first derived complexes is ambient isotopic to the 
identity as follows. (The obvious isotopy by straight paths in the simplexes of L is 
no good because it is piecewise algebraic and (1) not piecewise linear.) The isotopy H 
is constructed inductively on the prisms B • I, where B runs over the simplexes of L 

(1) For example consider the ambient  isotopy H of I given by the family H t : I - -+I  of piecewise linear 
I ! 

maps, where H t maps the intervals [o, ~], [ 5 '  I] linearly onto [o, x + t .  . I - k - t  - - 3  j '  [---~--, I], respectively. In  other  

words t t  is the obvious isotopy by straight paths from H o = x to H a . But al though each H t is piecewlse linear, 
H itself is not, only piecewise algebraic, because for example the line segment 3 s = t is mapped  into the parabolic 
segment 3 s ~ t q- t 2. 
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in some order of increasing dimension. H is already defined on the boundary of the 

prism, for H 1 g • I is given by induction, H / B • I by the isomorphism, and H tB • o by 
the identity; map the centre of the prism to itself, and join linearly to the boundary. 
The isotopy keeps fixed any subcomplex of L on which L 1 and L2 agree. Therefore H 

moves f to g keeping X • I fixed. 
To prove property (iii) we put extra conditions on the choices of K and L 1. 

Choose K so as to contain Y • I~ as a subcomplex. Having chosen K, K1, and there- 
fore L2, then choose L 1 so as to agree with L~ on f ( Y  • this being compatible with 
the condition of starring on the ~ level, because f ] Y  • I~ is already level preserving. 

Therefore H keeps f ( Y  • I~) fixed. 
Lemma 6. - -  Let g : X • I ~ X • I be an ambient isotopy of  a p@hedron X .  Let h be 

the ambient isotopy of X defined by 
I 

I, o<~t<~ ~, 

h t=  
I 

Then g, h are ambient isotopic keeping X • i fixed. 
Proof. - -  Triangulate the square 12 as shown, and let u : 12 ~ I  be the simplicial 

map determined by mapping the vertices to o or I as shown. 

0 o 

0 

.Define G :  ( X • 2 1 5 2 1 5  by 

G((x, s), t) = ((g~(8,t)x, s), t). 

Then (i) G is a level preserving homeomorphism by definition. 
(ii) A map is piecewise linear if and only if its graph is a polyhedron. 
G is piecewise linear, because the graph FG of G is the intersection of two 

subpolyhedra of ( X •  I2) 2 : 

I?G = ((i • u)2)-lrgc~(X 2 x r i ) ,  

where ( I X U) 2 denotes the map (X • 12)2 _~ (X • I) 2, where Pg is the graph of g, and Pi 

the graph of the identity i on 12. 
Therefore G is an isotopy of X • I in itself. By the construction of u, G moves g 

to h and keeps X • i fixed. Therefore G(g-  1 • I )  is an ambient isotopy moving g to h 

keeping X X I fixed. 
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Theorem 4. - -  I f  M is compact, then an7 two collars of  M are ambient isotopic keeping ~r 

fixed. 
Proof. - -  Given two collars, the idea is to (i) ambient isotope one of them until 

it is level preserving relative to the other on a small interval, (ii) isotope it further until 
it agrees with the other on a smaller interval, and then (iii) isotope both onto this common 

shortened collar. 

Let c, d ' l ~ I •  be the two given collars. Since each maps onto a 

neighbourhood of 1VI in M, we can choose ~>o, such that c(l~I•215 
Since c, d are embeddings, we can factor c = df, where f is an embedding such that 

the diagram 

I~ i •  ~ 

is commutative and fJ lVI•  is the identity. 

M _ I 
! 

1 
0 

I J J J  

h 

o ~ 2~ t 

1 
By Lemma 5 there exists 8, o < 2 8 < r  and an ambient isotopy F of l~/[• 

moving f to g, say, keeping 1~I • I fixed, and such that g is level preserving for o ~< t ~< 2 8. 

The reason for making g level preserving is that we can now apply Lemma 6 to g [ 1VI • 128, 

and obtain an ambient isotopy G of l~I • I2~ moving g]l~I • I28 to h, say, keeping 

1VI • I2n fixed, and such that h is the identity for o ~< t~< 8. Extend h to an embedding 

h : I V I x I ~ I V I •  by making it agree with g outside 1VIxI2s, and extend G by the 

identity to an ambient isotopy of l~Ix I. 
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Then GF is an ambient isotopy moving f to h keeping 1VI • I fixed. Let H be 

the image of GF under d. Since GF keeps 1VI • i fixed, we can extend H by the identity 

to an ambient isotopy H of M keeping 1VI fixed. Let e = H~c. Then e is a collar that 

is ambient isotopic to c and agrees with the beginning of  d, because if x~lVI and t e I  then 

es(x , t ) = e ( x ,  St) 

= H~c(x,  ~t) 

= dGaF1 d-lc(x,  3t) 

---- dG1Fjf(x,  3t) 

= d h ( x ,  

= d(x, ~t) 

= d~(x, t). 

Therefore e 8 = dn, and so by Lemma 4 there is a sequence of ambient isotopic collars : 

c, e, e~ = tin, d. The proof of  Theorem 4 is complete. 

Compatible collars. 

So far we have only considered collars on a single manifold; we now consider 
pairs of manifolds. Let f : M ~ Q  be a proper locally unknotted embedding between 

Define two collars c, d of M, Q to be compatible with f if the two compact manifolds. 

diagram 

( ~ •  

lx l  I t 

e> M 

is commutative, and im d n i m  f = i m  fc.  
Lemma 7. - -  Given a proper locally unknotted embedding between compact manifolds then 

there exist compatible collars. 
For the proof  see [8, Theorem 3 and Corollary]. The proof is a straightforward 

labour of constructing the collars inductively on the boundary simplexes of some 
triangulation of the manifolds, in some order of increasing dimension. 

We now improve Lemma 7 to the extent of transfering the smaller collar from 

the thesis to the hypothesis. 
Theorem 5. - -  Given a proper locally unknotted embedding f :  M - + Q  between compact 

manifolds, and a collar c of M,  then there exists a compatible collar d of  Q .  

- -  * d *  Proof. Lemma 7 furnishes compatible collars, c ,  say, of M, Q.  By Theorem 4 

there exist an ambient isotopy G of M keeping 1~I fixed, such that Glc*=c. By 
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Corollary I. 4 we can cover G1 by a homeomorphism h of Qkeep ing  Q fixed. Let d = hd*. 
Then the commutativity of the diagram 

Q •  Q 

l x t  

d 
> 

tl  

1VI• ~ M 

and the fact that 

im d n i m f = i m  hd*nim hf 

= h ( i m  d ' h i m  f )  

=h(imfc*) 

= imfc,  

ensure that the collars c, d are compatible with f .  The proof of Theorem 5 is complete. 

We now prove the crucial lemma for the covering isotopy theorem. 

Lemma 8. - -  Let M, Q be compact, and let F : M x I - - > Q x I  be a locally unknotted 

isotopy keeping ~r fixed. Then there exists r o, and a short ambient isotopy H : Q •  I,-+ Q •  I~ 

of Q that keeps ~)~fixed and covers the beginning of F. In other words the diagram 

Q x  I , ~  

F,• ] / Q x I ~  

M x I / r  

is commutative. 

Proof. ~ For the convenience of the proof of this lemma we assume that F 0 = F1. 

For, if not, replace F by F*, where 

/ 

F(x, t), o < t <  i 
F * ( x ,  t) = 2 

I 
-~< i F ( x ,  i - - t )  t-<< . 
2 

Then, since F; = F~, the proof below gives an H covering the beginning of F*, which 

I 
is the same as the beginning of F if ,~<-.  

2 
Therefore assume F o ~ F 1. This means that the two proper embeddings F, F 0 • i 

of M X I in Q •  I agree on the boundary (M • I)' ,  because F keeps 1V[ fixed. Choose 

a collar c of M • I, and then by Theorem 5 choose collars d, d o of Q •  I such that c, d are 
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compatible with F, and c, d o are compatible with F o x I. 
diagram of embeddings 

( Q •  I)" • I x 

- . , ~  
Q . x I  ( M x I ) I x I  _ Q . x I  

~ M •  

We have a commutat ive 

Notice that  both the collars d, d o map  ( Q •  o) • o to Q •  o. Therefore im d contains 
a neighbourhood of Q •  in Q •  and so contains Q •  for some ~>o.  Similarly 
dod-l(Q• contains a neighbourhood of Q •  and so contains Q •  for 
some o~, o < ~ < ~ .  

o V / / /  / t I l l l t i \ \ \ \ \ ' i  
v~M Q O 

/ 

Let 
O = d d o  i : Q x I , ,  -+ Q x I ~ .  

Then  G has the properties 
(i) G ] ( ~ x I = t h e  identity, because d, d o agree on ( Q . x I ) ' x o .  

(ii) G IQ.x o = the identity. 
(iii) G covers the beginning of F in the sense that  the diagram 

I~  G 

,.x, T QxI  
M x I  

is commutative.  For if x~M and t~I~ then by compatibili ty 

(Fox , t)zim(Fo x 1 ) h i m  do = i m ( F o  x i)c. 
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Therefore for some y ~ ( M  • I)" • I, 

(Fox , t ) =  (F o X I)cy=-do(FX I)y. 

Therefore 
G(F0 • i ) (x ,  t) = ( d r  X i )y  

=d(F• 
= Fcy 
= F(F 0 • I) - t  (F 0 • I)cy 
= F ( F 0 •  i ) - l (F0 x, t) 
= V(x ,  t) .  

In other words G(F0• I ) = F ,  which proves property (iii). 

By Lemma 5 there is an r, o < g < e ,  and an embedding H : Q •  Q •  
ambient isotopic to G, such that HI Q •  =-the identity and H is level preserving 

in I S. Further, since G is already level preserving on ((~uFoM) • we can by 
Lemma 5 (iii) choose H to agree with G on this subpolyhedron. In  other words, the 
restriction H : Q •  I, -+ Q •  I~ is a short ambient isotopy covering the beginning of F 

and keeping (~ fixed. 

P r o o f  o f  T h e o r e m  2, t h e  c o v e r i n g  i s o t o p y  t h e o r e m .  

We are given a locally unknotted isotopy F : M •  I - +  Q •  I keeping 1VI fixed, 
and a neighbourhood N of the track left by the isotopy, and we have to cover F by an 

ambient isotopy H of Q supported by N keeping (~ fixed. We are given that M is 
compact, and we first consider the case when Q is also compact and N = Q.  

I f  o <  t<  I, the definition of locally unknotted isotopy ensures that the restrictions 
of F to [o, t] and [t, I] are locally unknotted embeddings, and therefore we can apply 
Lemma 7 to both sides of the level t, and cover F in the neighbourhood of t. More 
precisely, for each t e I ,  there exists a neighbourhood J(~) of t in I, and a level preserving 

homeomorphism H (0 of Q• such that H (0 keeps (~ fixed, HI tt-- i, and such that 

the diagram 

is commutative. 

Q • j(t)..,..~lt) 

,rt• l I ~" Q • j(,) 
M x J It)IF 

By compactness we can cover I by a finite number  of such intervals j(t). 

Therefore we can find values ta, t2, . . . ,  tn and O = S l < S 2 < . . . < S r , + t =  I, such that 
for each i, [si, s i + 1] c J  (/i). Write H i = H (t~). 

We now define H by induction on i, as follows. Define H 0 =  I. Suppose 
H t : Q - +  Q has been defined so that H tF0=Ft ,  for o<<.t<s i. Then define 

H t _  i i --1 H f o r  Si<~t<<.s,+t. 
- -  H t (Hsi) ,~, 
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Therefore HtFo i i - t = H.t(Hs~ ) HsiFo 
_ t t - I  F 
- -  H!(Hs i) s~ 
= H~Ft, 

= F t .  

At the end of the induction we have H t defined and H tF 0 = F~, all t �9  Moreover H is 
piecewise linear, because it is composed of a finite number  of piecewise linear pieces, 

and H keeps 0.. fixed because each H ~ does. Therefore we have completed the proof 

for the case when Q is compact and N = Q .  
We now extend the proof  to the general case when Q is not necessarily compact, 

and N c Q .  We may assume that N is a regular neighbourhood of the track, because 
any neighbourhood contains a regular neighbourhood. Therefore N is a compact 

submanifold of  Q ,  because the track is compact. By the compact case F can be covered 

by an ambient isotopy of  N keeping N fixed, which can be extended by the identity to 

an ambient isotopy of Q covering F supported by N and keeping (~ fixed. The proof 

of Theorem 2 is complete. 

P r o o f  o f  A d d e n d u m  2 .  I .  

The converse of Theorem 2 is trivial, because if F 0 is a locally unknotted embedding, 
then the constant isotopy F 0 • i is locally unknotted and locally trivial. I f  F is covered 
by H then F = H ( F 0 •  i), which is again locally unknotted and locally trivial, because 

these properties are preserved under the homeomorphism H. 

P r o o f  o f  A d d e n d u m  2 . 2 .  

Given an ambient isotopy H of (~ supported by  a compact  subset X, we have to 
extend H to an ambient isotopy of  Q supported by a given neighbourhood N of X in Q.  
We cannot deduce the addendum as a corollary to Theorem 2, because the embedding 

Q x I - + Q x  I induced by H is not proper, and therefore not an isotopy according to 
the definition that we are using. However the use of a collar provides an alternative 

proof  as follows. 
Without loss of generality we can assume that X is a subpolyhedron, because the 

support of H is a subpolyhedron contained in X, and that N is a regular neighbourhood 
of X in Q ,  because any neighbourhood contains a regular neighbourhood. Therefore N 
is a compact submanifold of Q. The given ambient isotopy H restricts to X, and then 

extends by the identity to an ambient isotopy, G say, of I~ keeping I ~ - - X  fixed. 

0 s~ 0 
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Triangulate the square I s as shown, and let u : I s -+I be the simplicial map deter- 

mined by mapping the vertices to o or I as shown. Define G* : ( ] ~ x I ) x I - + ( N x I )  •  

by G*((x, s), t) = ((G~(8,0x , s), t). 

As in the proof of Lemma 6, it follows that G* is an ambient isotopy of 1~ x I keeping 

(N • I) u (N- -  X) X I fixed. 

Choose a collar c :N  x I - + N  and let H* be the image of G* under c. Since G* 

keeps N •  i fixed, H* can be extended by the identity to an ambient isotopy of N; 

and since G* keeps ( N - - X )  X o fixed, H* keeps the frontier of N fixed, and so can be 
further extended to an ambient isotopy H* of Q. supported by N. 

Finally we have to show that H* is an extension of H. I f  x r  then both H 
and H* keep x fixed; if x~X then 

Htx = (cG t c- )x 
= cC~ (x, o) 
= c(G,x, o) 

GIX 
HIx~ 

The proof of Addendum 2.2 is complete. 

Proof of  Corollary 2.3. 

Corollary 2.3 is concerned with the case when the isotopy F of M in Q. does not 

keep 1VI fixed. Let T denote the track of F in Q., which is compact because M is compact. 

Let 17 : I V I x I - + t ~ X I  denote the restriction of F to the boundary, which is locally 

unknotted because F is. Let X be a regular neighbhourhood of the track T n t ~  of ~7 

in (~, and let N o be a regular neighbourhood of X in Q. Then X, N o are compact, 
and by choosing sufficiently small regular neighbourhoods we can ensure that the given 
neighbourhood N of T in Q is also a neighbourhood of N 0. 

Now use Theorem 2 to cover F by an ambient isotopy of (~ supported by X, 
and by Addendum 2.2 extend the latter to an ambient isotopy, G say, of Q supported 

by N 0. Then G - i F  is an isotopy of M in Q keeping l~I fixed, with track contained 
in T u N  0. Since N is a neighbourhood of TUN0, we can again use Theorem 2 to 
cover G-1F by an ambient isotopy, H say, of Q. supported by N. Therefore GH 

covers F and is supported by N. 

Proof of  Corollary 2.4. 

By Corollary 2.3 and the Corollary to Lemma 2. 

We now proceed to the proof of Theorem 3. 
Lemma 9. - -  Any homeomorphism between the boundaries of  unknotted ball pairs can be 

extended to the interiors. 
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For do it conewise (see [8, Lemma 2]). 

Lemma xo. - -  Let (B q, B m) and (C q, C m) be two unknotted ball pairs. Then any 

homeomorphisms hl : Bq-+C q and h z : B ' ~ C  m that agree on ~m can be extended to a 

homeomorphism h : B q ~ C q .  

Proof. - -  By Lemma 9 extend h 1 to h 3 : B q ~ C  q, the composition h3h; 1 : c m ~ c  m 

keeps cm fixed, and, since (Cq, C m) is unknotted, can be suspended to a homeomorphism 

h , :Cq-+C q keeping C~ fixed. Define h = h ~ t h 3 .  Then hlB~=h3113q=hx, and 
hlBm= (h2h~)h3lBm=h2,  as desired. 

Lemma �9 �9 (interior linear moves). - -  Let M be a compact m-manifold, and Q a q-manifold, 

such that m<q.  Let K be a triangulation of  M,  and A = ~ ( v ,  K) a closed a vertex star of  K 

contained in the interior of  M.  Let B be a q-ball in the interior of  Q .  Suppose f ,  g : M ~ Q  are 

embeddings such that 

(i) f ,  g agree on M-- ,~ ,  
(ii) A = f - l B  = g - l B ,  

(iii) (B, fA)  and (B, gA) are unknotted ball pairs. 

Then f ,  g are isotopic by two interior linear moves that are linear with respect to K.  

Proof. - -  The geometrical idea of the proof is quite simple : we are faced with two 
maps A-+B which may criss-cross each other in the interiors but which agree on the 

boundary. So we move one onto a nice clean ball in 13, and then move that back onto 

the other. 
Let Aq be the standard q-simplex, Am a face, and A q - " - I  the opposite face. 

Let x be the barycentre of Aq, and y a point between x and the barycentre of A m (see 
figure I). Let ~ : Aq-+Aq be the standard interior linear move throwing x to y. 

Choose a homeomorphism h 1 :fA---~z~", and by the unknottedness of the balls 

concerned, extend hx to a homeomorphism h ~ : B ~ ( x ; ~ m u A m ) ~  q-m-1 Extend the 

composite homeomorphism h x f : A ~  m to a homeomorphism A ~ y ~ "  by mapping v 
t o y ,  and joining linearly; define h 3 so that the diagram 

A -- >y~m 

fA 

is commutative. By Lemma Io extend h~ and h3 to 

h~ : B-+x• 

Let C = h ~ - ~ ( x ~ " ~ a - " - l ) ,  which is a (q- - i ) -ba l l  facing B. We now construct a 

q-ball N contained in Q ,  meeting B in the common face C, and meeting f M  in f,~. 
We can either construct N explicitly, or else observe that N is a regular neighbourhood 

of C r o o d ( C o l ( M - - A ) )  in Q - - t ]  that meets the boundary regularly, and appeal 
to the existence theorem [4, Theorem I] for such relative regular neighbourhoods (using 

90 



ON COMBINATORIAL ISOTOPY 9 2 

that C is link-collapsible on C). An explicit construction for N is as follows : let K be 

a triangulation of Q-- I~  containing C and f ( M - - A )  as subcomplexes. Then K is 
a manifold since B lies in the interior of M. Let K"  be the second barycentric derived 

complex of K. Let N be the simplicial neighbourhood of C in K",  that is to say the 

union of all closed simplexes of K"  meeting C. By construction N has the desired 
intersections with B a n d f M .  Finally N is a ball because by [4, Theorem I] N is a manifold 
that collapses to C, and so N is collapsible; but any collapsible manifold is a ball. 

~ - m - |  

Since C is a face of N, we can extend hz[ C : C ~ x&"~, q - ' ' - t  to a homeomorphism 

h~ : N -+ xA~A q-m-1. 

Therefore h 4 and h 5 together define a homeomorphism h : B u N - + A q .  Now define 

an embedding e : M ~ Q  by 

e I M--,~-----f[ M-- ,~  
elA=h-la-lh(flA). 

Since f - I ( B o N ) = A ,  the move from e to f is linear with respect to K. But the 

construction of e depended only on ks, which in turn depended only on B and fiX. 
By hypothesis f l t k = g l A ,  and so e depends symmetrically on f and g. Therefore 
there is also a linear move from e to g, and so f ,  g are isotopic by two linear moves. 

Lemma x2 (boundary linear moves). - -  Let M be a compact m-manifold, and Q a q-manifold, 
where m<q. Let K be a triangulation of M and let A = ; i ( v ,  K),  where v is a boundary vertex 
of K. Let B be a q-ball in Q ,  that meets the boundary in a (q--  I)-baU. Suppose f ,  g : M ~ Q  

are proper embeddings such that 

(i) f ,  g agree on M - - A ,  
(ii) A = f - t B  = g - t B ,  

(iii) (B, fA) and (B, gA) are two unknotted ball pairs, that meet the boundary Q in an unknotted 
face. Then f ,  g are isotopic by two boundary linear moves, that are linear with respect to K. 

Proof. ~ Denote by a superscript star the restriction of everything to the boundary : 

M* =lVI,f*=fl lVI  : M*~Q*,  A * = A n M * ,  etc. Since (B*,fA*) is an unknotted ball pair, 
we can find, by the proof of Lemma i i, a ball N*, a homeomorphism h* : B*uN* ~ A  q-l,  

91 



9 2 j .  F. P. H U D S O N  AND E. C. Z E E M A N  

and an embedding e* : M* -+Q* such that e*, f*  differ by the interior linear move deter- 
mined by the standard interior linear move ~* : Aq-I-~A q-1. 

Regard Aq=VAq -1 as the cone on A q-1 with vertex V. Let e : Aq-+A~ be the 

standard boundary move induced by ~*. We want to find e : M -+ Q such that e, f differ 
by the boundary linear move determined by e. 

Since (B*, fA*) is an unknotted face of (B, fA) ,  the complementary face is also 
unknotted (see [4, Corollary 4])- Therefore using Lemma 9 twice, extend h*[B* to 
a homeomorphism onto the cone pair 

h : (B, fA)  -+ (V(h*B*), V(h*fA*)). 

Let 
N o ~-- N* oh-l(V(h*(g*cn N*))) 

which is a (q - -  i)-ball, because it is the union of two balls meeting in the common face 

B*r~N*. Let N be a regular neighbourhood of No mod( l~0uf (M--A) )  in Q - - B  that 
meets the boundary regulary. Then N is a q-ball meeting N*uB in the face No, and 
so we can extend the embeddings h* : N* ~Aq and h : B ~2xq to a homeomorphism 

h : B u N  ~Aq. 

Define e : M ~ Q  by 
e l M - - A = f l M - - A  

e[A=h-~-~h(flA). 

Then Lemma I2 follows as in the proof of Lemma 1 i. 

Proof of  Theorem 3. 

We are given proper embeddings f ,  g : M - + Q ,  of codimension > o ,  that are 
locally unknotted and ambient isotopic. We have to show that they are isotopic by 
linear moves. Since M is compact, we can assume that the ambient isotopy has compact 
support by Addendum I. 2 ; therefore by restricting attention to a regular neighbourhood 

of this support, we can assume that Q. is also compact. 
First consider the case when M is closed. Choose triangulations of  M, Q -  call 

them by the same names - -  such that f :  M ~ Q  is simplicial and the simplicial 

neighbourhood o f f M  in Q lies in the interior of Q.  Now apply the machinery of the 
proof" of Theorem I. We obtain a sequence ko, kl, �9 �9 ks of homeomorphisms of Q ,  
such that k0= i, k,f=g, and, for each i, k~_ 1 and k i agree outside some vertex 
star of Q.  Let f=-kJ. Fix i for the moment. Suppose k~_ 1 and k~ agree 
outside st(u, Q.). I f  uCfM then f ~ - l = f i .  I f  u~fM, let v=f-tu~M, and let 
A = K ( v ,  M), B =k~(si(u, Q ) ) .  Then A = f ; - ~ B  =f~- lB ,  and the ball pairs (B, f~_~A), 
(B, f~A) are unknotted since f is locally unknotted. Therefore we have precisely the 

situation of Lemma i i ,  and so f~-l , f~ are isotopic by two interior linear moves. 

Therefore f ,  g are isotopic by interior linear moves. 
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Now consider the case when M is bounded. As before choose triangulations M, Q 
such t ha t f i s  simplicial, and let M', Qj be the barycentric first derived complexes of M, Q.  
Apply the above machinery to O~. Fix i, and suppose that k~_,, ki agree outside st(u', Q'), 
where u'~fM'.  There are two possibilities according as to whether or not ~(u',  Qj) 

meets the boundary 0.. I f  not, proceed as above and use Lemma i i .  I f  it does meet 

the boundary, then st(u', Q')cst(u,  Q) ,  for some u~f~Vi. Reverting to stars in the 
underived complexes M, Q ,  we are then in the situation of Lemma 12, and so f i - t , f ~  are 
isotopic by two boundary linear moves. Therefore f ,  g are isotopic by linear moves. 
The proof of Theorem 3 is complete. 

P r o o f  o f  Coro l lary  3. x. 

By Corollary i .3, Corollary 2.4 and Theorem 3. 

P r o o f  o f  A d d e n d u m  3.2 .  

M is closed, and we are given a specific triangulation K of M. Choose a 
subdivision K 1 of K and a triangulation L 1 of Q such that f :  KI-+L 1 is simplicial. 
Let K2, L 2 be the second barycentric derived complexes of K1, L 1. Then f :  K~--~L~ is 
also simplicial. 

In the above proof of the closed case in Theorem 3 use K2, Lz to construct the 
sequence k0, kl, . . . ,  k n of homeomorphisms of Q ,  and embeddings f i = k J :  M--~Q. 
Fix i for the moment.  The proof of Theorem 3 showed that f~_ 1,fi differ by two moves 
linear with respect to Ks; we want them linear with respect to K, which is not immediately 
obvious because the simplexes of K may be large compared with those of K2; whereas 
the vertex stars of K~ are embedded locally, those of K may be spread globally over O .  

Let u 2 be the vertex of L 2 such that k~_l, k~ agree outside st(u2, L2). Assume 
u2~fM , otherwise f ~ - l = f ~  and the problem is trivial. Therefore we can define 

v2=f-lu2eKa, A2=~(v2,  K2) , and B2=k,(~(u2, L2)). Then A2=f~-~B2--f~-IB2. 
Now since L 2 is the second derived complex of L1, every closed vertex star of L2 is 

contained in some open vertex star of  L 1. 

Therefore ~(u~, L2) Cst(ul, L1), for some uleL 1. Then ule fM , because st(ux, L1) 
mee t s fM,  and so there exists v x = f - l U l e K  1. Let A 1 = ~ ( v l ,  K1) and gl=k,(-~(Ux, L1) ). 
Then A1 =fi-ttB1 -1B = f i  1, because BlaB 2. Also (Bl,fi_tA1), (BI,f~A1) are unknotted 
ball pairs by the local unknottedness o f f .  

Since M is closed, v I is an interior vertex of K1, and so u 1 is an interior vertex of L1, 
o 

because f is proper. By our choice of Ux, B2CB1, and therefore 
o o 

A2 =f~-  1B~ cf i -  1B1 = A1. 

Since K 1 is a subdivision of K, st(v1, K1) cst(v, K), for some vertex veK. Let 
A = ~ ( v ,  K). Then AIcA.  Therefore both the balls A, A 1 are regular neighbourhoods 
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of  A 2 in M. There fo re  there  is an ambien t  isotopy, G say, of  M moving A 1 onto A and  

keeping A,  fixed (see [4, T h e o r e m  3])- Th e  composi t ion 

o ( ]  o 

( M - - A 2 )  x I > ( M - - A , )  • I f~ • ~ ~ , •  

is an isotopy of  M - - , ~  in O - -  l~ 2 keeping A s fixed, and  so by  T h e o r e m  2 can  be covered 

by  an  ambien t  isotopy, H say, of  O~--1] 2 keeping 1~ fixed. Ex tend  H by the 

ident i ty  to an  ambien t  isotopy H of  Q keeping B 2 fixed. Le t  B = H1Bt. T h e n  BD B2, 

and  so 
A = f / - ~ B  ----A- 1B, 

because the same formulae  hold for A 1, B 1 and  the h o m eo m o rp h i sm  H 1 throws B 1,f~_ 1AI,J~A 1 

to B,f~_,A,f~A, respectively. Similarly (B,f~_tA),  (B,f~A) are unkno t t ed  ball pairs, 

because the same is t rue for A a and  B a. Final ly f - l , f ~  agree on M - - . 4 .  because by 
o 

construct ion they agree on M - - A ~ ,  and A2r  There fore  by L e m m a  i i ,  f - l , ~  are 

isotopic by  two moves l inear  with respect  to K.  Consequent ly  f ,  g are isotopic by moves 

l inear  with respect to K,  and  the p roo f  of  A d d e n d u m  3.2  is complete .  
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