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AN ESSAY ON DYNAMICAL SYSTEMS,

Classification.

Twenty years ago it would have seemed an impossible task to try
and classify all ordinary differential equations. There were just too
many different types. However the impact of structural stability, and
related concepts makes classification a plausible goal (see [14, 17] ).
The whole subject of differential equations has acquired a new cohesion,
and the many special equations of classical literature are now seen to
fit as parts of a general overall pattern [ 8] . The more that the
pattern emerges, the clearer it becomes which properties of differential
equations are func_iamental , and which are really only technical difficulties.
To give an example: one only has to compare the complexity of the
earlier topological dynamics with the simplicity of the new differentiable
dynamics to realise how the former had unwittingly misdirected the
subject. The emphasis on topology-without—-differentiability had allowed
the subject to stray up a side alley, and lose itself in low—dimensional
pathology. With the new ideas the generic situation is n—dimensions is

now much clearer,

Structural stability.,

Let us be more explicit, by describing the compact autonomous
case. Let M be a smooth manifold, and for simplicity of exposition
suppose M is compact. Let X be a vector field on M, The ordinary
differential equation is X = X, when x € M. By the existence theorem

X determines a unique flow or dynamical system ¢ on M. More
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precisely a dynamical system is an R-action on M (where R denotes
the reals), in other words @ is a smooth map @ :R xM = M, such
that vt€ R, CPt:M -+ M is a diffeomorphism, where @ t(x) = Q(t,x),
and such that ‘PS CPt = <PS+t. To define structural stability we must
choose an equivalence relation and a topology on the set 33 of all vector
fields on M, as follows. Define X, X' to be eqguivalent if da
homeomorphism of M throwing X-orbits onto X' —orbits. Choose the
C.l ~topology on 2 ; in other words X,X' are close if both the vectors

and their first partial derivatives are close. Then define X to be

structurally stable if it has a neighbourhood of equivalents in £ .

We remarked that structural stability is quite different from classical
notions like Lyapunov-stability; the latter refers to individual orbits,
whereas the former refers to the whole system. Lyapunov-stability
says that in a fixed system the orbit does not change much if we perturb
the initial conditions. Structural stability says that if we perturb the
whole system the global quality is preserved (allowing for arbitrary
initial conditions). Thoughout this essay we shall always use the word
stable to refer to concepts like structural stability and use the word
attractor to refer to individual closed orbits that are Lyapunov-stable.
We shall see that in higher dimensions attractors can be more
complicated and subtle than individual orbits, and are in a sense the
basic indecomposable units,

Structural stability was obviously part Poincare's intuitive thinking
in 1890, but was not formally introduced until 1937 by Pontrjagin and
Andronov  [1] . It became a dominant theme when Peixoto [6] proved

two beauitful theorems in 1961 of density and classification. Peixoto's
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theorems were very limited because they only referred to 2-manifolds, but
they were important because they set the guidelines for research during
the 1960's, and many workers struggled hard to prove n—dimensional
analogues. Therefore it is worthwhile examining them in more detail.

Peixoto's first theorem proved that if dim M = 2 then structurally
stable systems are open dense in & . Openness is trivial but density
is deep. Density means that for modelling experiments one can
ignore unstable systems, and need only use stable systems, Moreover
if the experimental inaccuracy is smaller than the neighbourhood of
stability, then the model remains valid in spite of experimental
perturbations. Therefore from the point of view of applied mathematics
structural stability is an attractive notion. Meanwhile from the point
of view of pure mathematics structural stability is equally att ractive,
because stable systems are vastly simpler that non-stable, and although
the classification of all systems remains intractible, the classification
of stable systems becomes plausible.

In 1966 hopes were dampened, but research was stimulated, by
results of Smale [13] and Williams, showing that for dim M 2 3
structurally stable systems were not dense. Many refinements of the
definitions were explored, many properties were proved generic, and
many subtle examples were concocted - see the surveys [3 , 14 1 .
But to my mind one of the most striking results came in 1972 when
Shub [10] (and Hirsch), using a result of Smale [15] showed that structurally
stable systems are dense in the Co—topology on & . In other words
they are open-not—dense in the C1—topology and dense-not—open in the
Co—topology. This curious but remarkable result retains the

attractiveness mentioned above to both pure and applied mathematics,
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because it is just what is needed for both classification and modelling.
For convenience we shall refer to this result as the Density Theorem,
The proof uses handlebody decomposition of manifolds, one of the main
tools of differential topology. An amusing anecdote is that Smale
invented the tool on a beach in Rio in 1960, and then eleven years later
as he stumbled across the same beach it suddenly occured to him how

to use the tool in this context,

Attractors and basic sets,

We now turn to Peixoto's second theorem. He classified
stru cturally stable systems on a 2-manifold by showing them to be
Morse-Smale [3, 11] . Before describing Morse-Smale sys tems

we shall introduce the non-wandering set {1 , because this will enable

us to discuss at the same time the n=dimensional classification.

A point x € M is called wandering if some neighbourhood of it
wanders away and never comes back; more precisely 3 N, x e Nc M,
and 3 tys Such that vt > t_, N N P, N= g . Letfl be the set of
non-wandering points. In some sense fl is the heart of the dynamical
system, because it tells us qualitatively about the long term behaviour:
1 contains the attractors, the points and sets towards which almost
all orbits eventually flow. Each attractor has its basin of attraction,
and from fl can also be deduced the boundaries of the various basins.

Let us consider some examples, Suppose X is a gradient
system, on other words X = - grad V for some generic potential
V:M = R, Then fl is the finite set of fixed points, the sinks, -
sources and saddles, or in our terminology attractors, repellors

and saddle-points. In the definition (see [3, 11]) of a Morse-Smale
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system, fl consists of a finite set of fixed points and a finite set of
closed orbits; each closed orbit is also an attractor, repellor, or
saddle (although in 2-dimensions there are only attractors and
repellors because there is not room for a saddle-closed-orbit).
Therefore in a Morse~Smale system almost every orbit flows either
towards an attractor—point or an attractor-closed-orbit, For example
in the VVan der Pol equation the manifold M = R2 (non=compact in this
case) and {1 consists of one repellor-point and one attractor-closed—-orbit.
Peixoto's theorem says that this type of behaviour is typical for
structurally stable systems in 2-dimensions.

We approach a fundamental question in differential equations
theory: what is the typical structure of 1 in n-dimensions? The
Density Theorem implies that it is generic property (in the sense of
being dense in the Co—topology) that 1 should have a finite number of connected

. components, Therefore the generic differential equation on a
compact n-manifold only has a finite number of attractors. The
components of {1 are called basic sets. A great deal  research
has been directed at unravelling the structure of basic sets, and in
particular the structure of attractors (see for example [1 8] )e
In other words we are trying to answer the question: what is the
n—dimensional analogue of an attractor-closed-orbit?

Before 1960 no examples were known, but now there are many
revealing examples, and both generic properties and general patterns
are emerging. Some basic sets are manifolds, others have Cantor
sets as cross-sections, and others can be yet more complicated. Let
us confine our attention for the moment to a single attractor in a

structurally stable system @ on M, and let us suppose that this
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attractor A is a compact submanifold of dimension > 1. One of the
reasons why such attractors were not discovered earlier was that by
a low dimensional fluke dim A # 2. For, by our assumptions, if tpA
denotes the restriction of the flow to A, then qu is itself stable flow
on A with non-wandering set {1 , = A, But by Peixoto's classification

A

theorem above this is impossible if dim A =2, Hence dim A 2 3.

Anosov flows.

Intuitively one can see why 3—-dimensional examples are possible,
whereas 2-dimensions are not, by looking at the beautiful examples
of Anosov flows, (partly suggested by Thom and proved stable by
Anosov [2] in 1962). These flows are characterised by being
everywhere hyperbolic, or saddle-like; in other words any small
section transverse to the flow can be written as the product of two
subsections, one of which expands as it flows along, and the other of
which contracts. Since this requires at least one direction of
expansion. , one of contraction ,both perpendicular to the flow, the
manifold must be at least 3-=dimensional. Examples of Anosov flows
are the geodesic flows on the unit tangent bundles of Riemannian
manifolds with negative curvature [ 2 ] . Anosov flows and Anosov
diffeormorphisms [see 3, 14] have been studies in depth by Anosov,
Sinai, Moser, Mather, Bowen, Franks, Walters, Manning and many
others, by means of ergodic theory and entropy, Lie groups and
homogeneous spaces, differential geometry, algebraic geometry,
homotopy groups, homology theory and spectral sequences, Markov
chains and shift automorphisms, zeta functions counting the periodic

orbits by means of eigenvalues, proving the stability by means of
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transversality in function spaces., [ wrote this list to indicate how
central is the field to mainstream mathematics, how rich and varied
are the problems that arise, and how differential equations needs to

draw upon every other mathematical discipline.

Properties of Basic sets.

I should like to draw attention to two st riking properties of basic
sets, Firstly in an Anosov attractor there are an infinite number of closed
orbits, densely filling the whole manifold. In fact in 1967 Pugh [7 ]
proved that this is generically true for all basic sets. Secondly most
orbits are not closed, but spiral densely over the whole basic set, This
second property is called transitivity [14 ] , and has been proved for
some Anosov ﬂow's and for several other examples of basic set, and is
conjected to be true in general. In fact the Density Theorem allows
us to confine ourselves to transitive basic sets. The first property
means that recurrence and resonance must always be present in any
non—-gradient system  while the second property means that the basic
sets are indeed the indecomposable units. These two properties must
influence our thinking when modelling any complex situation, particularly
where there is a lot of feedback, such as in biological systems like the
brain.

The horseshoe,

We return to our central theme of analysing basic sets. The
most fundamental example of a non-manifold basic set is the Smale
horseshoe [12, 14] which he first described in 1961. This is an
example that can occur as a saddle inside a 3—-dimensional flow, and

indeed does occur in perturbations of the forced Van der Pol equation.
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I do not have space to describe the horsesnoe properly, but let me
make a brief attempt. Consider the Cantor set C contained in the
. 2 . . A 2
unit interval 1. The product C is contained in the unit square 1,
We can parametrise C by infinite sequences of O's and 1's, and
2
further parametrise C~ by doubly=infinite sequences of O's and 1's,
2 2 z ; ;

Let f:C~ = C~ denote the shift automorphism which moves each
doubly infinite sequence one step to the right. What Smale showed

2 2
was that it was possible to embed the square I in the sphere S,

and define a diffeomorphsim F: 52 -+ 52 such that I:IC2 =f., The

reason he called it the horseshoe was - 4
5 Fe

because the image FI  of the square
Fb

was shaped like a horseshoe. I" )

. fe .

Moreover he arranged that the FI
Fd i

non-wandering set of this b ¢

diffeomorphism F consisted of a single attractor-point a , a single
repellor-point B , and the whole of 02 , which acted like a saddle.
(The non-wandering set of a diffeomorphism is analogous to that of
a flow). Now suspend F as follows: let M3 be the manifold obtained
from 52 x I by glueing the ends together using the diffeomorphism F
(actually M3 = 52 x S1 because F is diffeotopic to the identity). Let @
be the flow on M8 determined by the unit vector field parallel to I.
This is the flow we want to look at. The non-wandering set f1 of
P consists of 3 basic sets, as follows: there is one closed-orbit-
attractor, namely a x I with the ends identified; there is one
closed-orbit-repellor, namely B x I with the ends identified; finally
there is a saddle-type basic set T' , namely C)2 x I with the ends

identified by means of the shift automorphism f, Surprisingly T is
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5 2
connected as a topological space (although of course C was not
; 2
connected). The trick is to choose a point y € C~, whose parameter
sequence of O's and 1's contains as subsequences all possible finite
sequences; then, if Z denotes the integers, the f-orbit through y,

& - i i |
namely E y; m € Zi , is dense in C7; therefore the @-orbit
of y x O spirals densely over I' . Hence T is connected, and so is
a basic set. Furthermore I' is packed densely with an infinite
number of closed orbits, because the @ —orbit through z x 0 is
closed whenever z is periodic under f. Therefore I' has the two
properties described above. Robbin [8] has shown that the map

F is stable, and hence the flow @ is structurally stable.

A classification theorem.

Why is the horseshoe so fundamental? Because with it we can
state a generalisation of Peixoto's theorem in n—-dimensions,
First we can define horseshoes in n—dimensions. These are particular
saddle-type basic sets of n—-dimensional flows. More precisely an
n-horseshoe is the suspension of a subshift of finite type, defined in
geometric fashion on a Cantor set in (n—1)—-dimensions. Next we can
generalise the notion of a Morse-=Smale flow as follows. Let us call
a flow @ on a compact manifold Mm" a Smale flow, if its basic sets
are
i) A finite number of fixed points (attractors, repellors & saddles).
ii) A finite number of closed orbits (attractors & repellors only).
iii) A finite number of horseshoes (all saddles).
We should also add a condition that the insets and outsets of basic
sets cut transverally . We can now state a generalisation of Peixoto's

theorem:
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Theorem,

i) Smale flows are structurally stable

ii) Smale flows are dense in the Co—topologi:

The proof of part (i) is due to Robbin [8] and part (ii) is a
consequence of the Density Theorem.

It is very satisfactory to have a dense set of models. On the
other hand if we apply this theorem to an Anosov flow it seems
aesthetically rather a shame to destroy the purity of the latter by
approximating it by a Smale system. However Thom points out
that this type of "quantization" may be significantly related to

thermodynamics.

Diffeornorphisms.

The reader will observe from the horseshoe example how
intimately diffeomorphisms are connected with flows. Formally this
connection looks even more striking when one observes that a
diffeomorphism generates a Z-action, while a flow is an R-action, on
a manifold. In fact most of the qualitative phenomena associated with
differential equations appear in simpler form, but equal depth, in
the study of diffeomorphisms. It is for this reason that Smale's
1967 Survey paper [14] , and much of the succeeding literature
has been written in the venue of diffeomorphisms, although the main
inspiration and driving force behind the research is the study of

differential equations.



Hamiltonian systems.

Hamiltonian systems are not structurally stable in the above sense,
because they are conservative: energy is conserved and so the orbits
lie in the energy levels. If an arbitrarily small damping term is added,
then energy is dissipated, and the orbits spiral down to energy minima.
The new dissipative flow is not equivalent to the old conservative flow,
and hence the structural instability.

However it we confine ourselves to perturbations within the
Hamiltonian framework it is possible to develop a theory of Hamiltonian
stability, although the latter is still in its infancy. The structure is
harder to analyse, because by Liouville's theorem volume is preserved
and so there can be no attractors. Therefore there is a greater tendency
to use analytic averaging devices, and tools of ergodic theory, rather
than the geometric tools of differential topology. Consequently from the
qualitative point of view, stable Hamiltonian systems are more
complicated than structrually stable systems. Therefore, since physics
uses the former and biology the latter, we should expect the forms
in physics to be harder to find and more elusive to handle. Indeed in
biology geometric forms abound, while in physics averaging devices
such as temperature, pressure, density and entropy abound.

However in one area there is a surprising similarity: the ergodic
properties of attractors in structurally stable systems have a strong
resemblance to ergodic properties of energy levels in Hamiltonian
systems. Therefore it is possible that sophisticated ideas of physics
may be applicable to complicated states of dynamic homeostasis in

biology.
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Bifurcation.

Let D denote a space of dynamical systems. For example D
might be the space of vector fields on a manifold, or the subspace
of gradient fields, or the subspace of Hamiltonian fields, or the
space of diffeomorphisms of a manifold. Suppose we had already
developed a good theory of stability, and could write D =S U 2 |
where S is an open—dense set of stable systems, and 2 the
complementary space of unstable systems., So far we have studied

the problem of definingand classifying points of S, The next step

is to consider parametrised or _D
controlled systems. For example S

a system that was changing with ars

time would be represented by an biﬁn{'b

arc in D, If the arc crossed 2 , then at that moment the system
would change in quality; attractors might bifurcate or basic sets
coalesce. The study of such changes is bifurcation theory.

The first task is to analyse the structure of 2 ., In general D
will be infinite dimensional, but in some cases Z may be stratified
into strata of various a@dimension. An arc, parametrised by time,
would then only meet the strata of codimension 1, and an analysis
of such strata would indicate the generic ways a system could
bifurcate with time. If 4—dimensional space-time were the control
then we should have study strata of codimension € 4 to obtain the

generic bifurcations.



Catastrophes.,

As yet bifurcation theory is in its infancy, and the only case
which has been studied in depth is the bifurcation of gradient systems.
This has ledto Thom's theory of elementary catastrophes [16, 17, 19].
A gradient system is determined by a potential function V:iM -+ R, and
the non-wandering set consists of the singular points of the map V,
Therefore not surprisingly the bifurcation of such systems is related
to higher dimensional singularities of maps, and using the latter Thom
has discovered a remarkable finite classification theorem. He has
shown that for a 4-dimensional control space there are only 7 types
of bifurcation, governed by 7 particular singularities.

This is a striking and beautiful piece of mathematics for several
reasons. Firstly each of the singularities has its own unexpected
geometry, which can be described in sufficiently elementary terms as
to be accessible to any scientist . Secondly the proof of Thom's
theorem due to Mather  [4 ] , Malgrange and Nirenberg (5]
uses sophisticated results from several fields induding classical

analysis of several variables, both real and complex, function analysis,

global analysis, commutative algebra, algebraic geometry, differential
topology and differential equations. Therefore it is central to the

mainstream of mathematics. It has stimulated considerable growth

in the general study of singularities of maps. Thirdly it has applications

in many fields of applied mathematics (see for example [ 16, 17, 19, 20, 21)).
It provides a wealth of new models for biology and the social sciences.

In particular it provides models for situations where continuous control

causes discontinuation jumps of state. For suppose the state of a

system lies in some attractor and that this attractor is annihilated by
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bifurcation — as for example when a minimum coalesces with a
maximum and both disappear. Then the state must flow towards
a different attractor, and if the speed of flow is large compared with
the speed of change of control, then the system will appear to jump
into a qualitatively new state — for example the jump in density as
slowly increasing temparature causes water to suddenly boil.
Previously such discontinuities tended to be handled each by an
individual ad hoc model, but bifurcation theory, and in particular
catastrophe theory, provides a general method.

Passing from gradient systems to non-gradient systems, the
problem of bifurcation becomes much harder, and is virtually
unexplored. If the systems involved are Morse-Smale, that is to
say the basic sets are just closed orbits, then the elementary
catastrophes govern bifurcation. For instance the forced Duffing
equation is a beautiful example of the cusp catastrophe. However
high-dimensional attractors can bifurcate in a much more complicated
way, and already Ruelle and Takens [9] have pointed out that this

may give us insight into the mathematics underlying turbulence.
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