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ABSTRACT,

Using catastrophe theory, we prove a theorem to the effect that
whenever a multicellular mass of tissue differentiates into two types, the
frontier between the two types always forms to one side of its final
position, and then moves through the tissue before stabilising.in, its final
position. We call this movement a primary wave. Primary waves may
sometimes be identified as hidden waves of cell determination, which may
not manifest themselves visibly until after a delay of several hours., The
visible manifestation will then be a secondary wave of cellular activity,
which may cause morphogenesis, for example rolling changes of

curvature,

Two applications are worked out in detail, namely models for
gastrulation and neurulation of amphibia, and for culmination of cellular
slime mold. In the amphibian model the differentiation between ectoderm
and mesoderm causes a hidden primary wave, whose visible secondary
wave of cells submerging causes not only the morphogenesis of gastrulation
but also the formation of notochord and somites. In the slime mold
model the differentiation between spore and stalk causes a hidden primary
wave, whose visible secondary wave of cells submerging causes
culmination and the morphogenesis of the fruiting body. Both models

suggest experiments by which they can be tested.
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1 INTRODUCTION,

Our objective is to explain primary waves by catastrophe theory [18],
and secondary waves by cell physiology [1,8], and then to use them both
together to explain morphogenesis.

By a wave we mean the movement of a frontier separating two
regions. We call the wave primary if the mechanism causing the wave
depends upon space and time. We call the wave secondary if it depends
only upon time, in other words it is series of local events that occur at
a fixed time delay after the passage of the primary wave. Therefore,
whereas the wave-formof the primary wave is fundamental, the secondary
wave only appears to have a wave-form because it follows the primary
wave after the fixed time delay. In a sense the wave-form of the
secondary wave is accidental because it could be disrupted by mixing up
the substrate in between the passage of the two waves. The epidemic
example in {2 below illustrates this point. The point is further
emphasised by the following difference between the primary and
secondary wawves : if the substrate is cut before the passage of the
primary wave then this stops the primary wave. However if the cut is
made between the passage of the two waves then this will not stop the
secondary wave, which will appear to jump across the cut,

If the primary wave is invisible, then the secondary wave may
appear mysterious. We suggest that this may be a typical situation in
developmental biology. For instance a primary wave across a
multicellular mass of tissue might consist of the switching on of certain
gene systems in each cell, and this may be difficult to detect at the time

because biochemical analysis tends to disrupt the delicate dynamics; in

—
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fact most experimental evidence that gene systems have been switched on
seems to come from observation of some secondary effect after a
suitable time delay (see §7 below). The secondary effect in this case is
usually some physical manifestation in cell behaviour such as change in
chemical composition, change in RNA content, change in oxygen
consumption, change in membrane cohesiveness, change in shape, change
in amoeboid activity, change in mitosis rhythm, etc. Another common
and important secondary effect is for the cell to alter the ratio between
the areas of that part of its membrane in contact with other cells and
that part comprising free surface of the tissue; for instance the cell can
increase contact with other cells by amoeboid action towards them, and
decrease its free surface by wrinkling its free membrane (see Figure 21).
For convenience we call this process submerging. For example

submerging happens during gastrulation (see Figure 20).

It is the secondary wave of physical manifestation that may signal the
release of chemical energy to provide the physical energy necessary for
morphogenesis, For example submerging cells may push and pull on
their neighbours, and thereby alter the owverall curvature of the free
surface, as described in Gustafson & Wolpert [8]. We suggest that some
morphologies that hitherto may have appeared to be explicable may now
be explained in terms of secondary waves. If this is the case, this may
provide a conceptual framework for the experimental search for hidden
primary waves,

The next question is : what causes a primary wave ? The simplest
mechanism is diffusion, for instance of chemicals or signals. In order
to illustrate the difference between primary and secondary waves, we
briefly give elementary examples of epidemics and regulation in §§ 2
and 3, in which the primary wave is caused by diffusion.

However for the rest of the paper we are interested in a more
subtle mechanism for producing primary waves. We prove a theorem
that the four hypotheses

I Homeostasis
II Continuity
111 Differentiation
IV Repeatability

together imply the existence of a primary wave. Anocother way of stating
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the theorerm is that whenever a frontier forms between two types of
tissue, it first forms off to one side, and then moves as a primary wave
through the tissue before stabilising in its final position. The thecrem
gives no indication of the extent of the movement, although in some
applications it appears the movement can be very large, over half the
diameter of the embryo. Since the formation of frontiers is common in
developmental biology, we should expect such primary waves to be
commmon, and hence morphogenesis to be commonly caused by their
secondary waves,

We state the theorem more precisely in §5, and prove it in §8. The
proof consists of translating the above four hypotheses into mathematics,
thereby making them precise, and then using Thom's classification of
elementary catastrophes [181. Since the latter result is deep, the
theorem is a non-trivial description of the mechanism underlying this
type of primary wave.

One of the interesting features of the theorem is that diffusion may
or may not be present during the passage of the wave : it is irrelevant
to the proof. In other words the complexity of biochemical events
associated with a particular primary wave, even one that subsequently
dows down to halt, may include, for instance, diffusion of chemicals
across cell membranes, or diffusion of dynamical signals across the cells
entraining some activity in them. On the other hand another primary
wave may progress without any diffusion, and without any signals. In
this case the wave would be purely kinematic, with each cell behaving
according to its own internal clock. The clocks may have been
synchronised initially, but, due to some underlying gradient across the
tissue, may tick at different speeds. Therefore a switch inside a cell,
for instance the hidden switching on of some gene system (analogous to
the clock striking), will oceur in different cells at different times. The
continuity of the underlying gradient will ensure a continuity of these
different times across the tissue, and so the switch progresses as a
primary wave. The question remains as to what actually causes the
switch, and an analysis of the proof of the theorem reveals that the basic
cause is, surprisingly, homeostasis. What is homeostasis? - we choose
to translate homeostasis into mathematics as a stable equilibrium point

of a time-dependent multidimensional dynamical system (see §8B).
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Returning to diffusion for a moment : of course the continuity of the
underlying gradient may itself be due to a much earlier diffusion, for
instance in the cytoplasm of the original egg before cleavage. And again
if a cell is grafted to alien surroundings, then a new diffusion may
occur that upsets its clock. However under normal conditions, it could
be possible for both development and primary waves to occur without
diffusion. Therefore one implication of the theorem is to alter the
possible expectations of the experimentalist concerning "morphogens", A
related result from catastrophe theory [26] guarantees the existence of
morphogens, but they may not act like classical "organisers". In other
words, if we locate the organising centre of some morphology, we may
still expect to find a morphogen, that is a chemical, physical or dynamic
gradient, whose discontinuities reflect the organisation, but we should not
necessarily expect to find an organiser, that is a chemical, physical or
dynamic signal emanating from the centre.

The theorem gives both qualitative and quantitative predictions about
the shape and speed of primary waves, and consequently also about
their secondary waves. We illustrate the theorem by two applications in
10 - 17, namely the gastrulation of amphibia, and the culmination
of slime mold. In both examples we take as hypothesis (for which there
is experimental evidence) a secondary wave of cells submerging. In the
first example the differentiation between ectoderm and mesoderm causes
a primary wave, by the theorem. We take as hypothesis (for which
there is experimental evidence) that this hidden primary wave begins at
the bottom of the grey crescent. We then deduce that the secondary wave
causes, or helps to cause, gastrulation, the dorsal lip, the blastopore,
the archenteron roof, the separation of mesoderm from endoderm, the
neural folds, and the formation of notochord and somites during
neurulation, The fact that nearly all the main morphogenetical
movements arise from a single secondary wave, resulting from a single
differentiation and the local activity of cells submerging, help to explain
why these movements are common to many species.

In the second example of slime mold the differentiation between spore
and stalk cells causes a primary wave, by the theorem. We take as
hypothesis (for which there is experimental evidence) that the primary

wave begins at the tip and proceeds X% of the way along the grex, several
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hours before culmination. We then deduce the morphogenesis of the
fruiting body, giving predictions as to shape and speed.

1 am indebted toc many people for discussions, particularly
mathematicians, René Thom, David Fowler and Klaus Ja3nich, and
biologists C.H. Waddington, Jack Cohen, Lewis Wolpert, Peter Nieuwkoop,
Jonathan Cooke and John Ashworth, The main inspiration came from
years of cornwversations with René Thom about applying catastrophe theory
to biclogy. Meanwhile in counterconversations Lewis Wolpert emphasised
the inadequacy of using catastrophe theory by itself, because it can only
explain the geometry, and not the forces that shape the embryo. On the
other hand looking at the local forces by themselves cannot explain the
global geometry. Hence the concept or primary and secondary waves
grew out of trying to put these two ideas together, the mathematical and
the biological.

Discussions with Peter MNieuwkoop about gastrulation were particularly
valuable during the germination of the ideas, after an initial presentation
of the theorem at a conference in Gottingen in September 1973 organised
by Klaus Janich. Jonathan Cooke stimulated the ideas about pattern—
formation and the somites., John Ashworth explained to me the slime
mold morphogenesis. [ am indebted to the AA.A.S, and A.M.S, for
the opportunity to present the ideas, and to the various authors and

journals for permission to reprint their diagrams.
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2, EXAMPLE : EPIDEMIC.

This is a simple example to illustrate the difference between
primary and secondary waves. The substrate is people. The two
regions are those who have been infected by the epidemic and those
who have not. The frontier bounds the infected region. This
frontier moves forward as a hidden primary wawve of infection. This
is a simple diffusion wave, that mowves steadily forward at the speed
of diffusion as each person infects his neighbours (similar to
Huyghens' principle). Then after a fixed time delay the visible
secondary wave of symptoms follows, assuming that the people have
remained stationary. If the people mowve about in between the
waves then the wave-form of the secondary wawve will be disrupted.
If the substrate is cut before the arrival of the primary wave, in
other words the infected population is quarantined, then this stops
the primary wave, the spread of infection. However if the substrate
is cut between the wawves, in other words only the population already
showing symptoms is quarantined, then this does not stop the

secondary wave, the spread of symptoms.

3. EXAMPLES : REGULATION.

In the heartbeat the pacemaker wave causing muscular contraction
is a primary wave, and about half a second later the wave muscular
relaxation is a secondary wave [24], In the nerve impulse the
membrane depolarisation along an axon is a primary wave, and
about a millisecond later the repolarisation is a secondary wave.

On both these cases the primary wave is electro-chemical, and could
be described as a diffusion wave (diffusion of electrons) proceeding
according to Huyghens' principle.

The main feature of a diffusion wave is that it preceeds at
constant speed. By contrast the main feature of the more subtle
kind of primary wave that the theorem describes, and which we
shall be considering from now on, is that it slows to a halt; in

other words the frontier stabilises.

75



76 E.C. Zeeman

4, EXAMPLE : ECOLOGY.

This is a simple example to illustrate the more subtle kind of
primary wave. The wave has complicated causes, but is easy to
understand beacuse it is visible rather than hidden. The ecology is
greatly oversimplified, but then we are only using it to illustrate the

idea.

Consider the ecological development of grass and trees over a
continuous environment of soil and climate. Suppose for simplicity
that the northern end of the environment is suitable for grass only
and the southern end for trees only, so that the former eventually
develops into mature grassland, and the latter intoc mature forest.
Suppose that as either vegetation gets established it suppresses the
other; trees fail to survive in grassland and grass fails to survive in
forest, Suppose at first there is a continuous wvariation of wvegetation,
varying from forest in the south, with trees gradually thinning as we
proceed north, until grassland is reached. Then at time t‘l the forest

will develop a noticeable frontier at latitude s,, say. This frontier

1
will deepen, in the sense that the difference between the two sides of
the frontier will become more marked, due to the suppressive effect
of either wegetation upon the other, As the frontier deepens it would
be exceptional for it to remain at S the place where it originally
formed (exceptional from the point of view of repeatability, as we
explain below)., Therefore, depending upon the initial conditions, it
will either mowve north as the mass of trees seed themselves into the
grassland, or move south as the grassland erodes the forest edge.

Suppose that in our case the initial conditions are such that the

frontier moves north as in Figure 1.
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Figure 1. The frontier of a forest moving as a primary wave.
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Eventually the northerly expansion of the forest balances out against
the unsuitability of the northern climate for trees, and so the northerly
movement of the frontier slows down, until it stabilises at s_ at time t_.
Thereafter the frontier remains in stable equilibrium, and deepens
further, The movement of the frontier from s, to 52 during the time

1
interval t,<t<t_ is the primary wave.

1 2
The primary wave is succeeded by a series of secondary waves
representing the spread of various species of flora and fauna that
require various time delays of maturity before the forest becomes a
suitable habitat for them (woodworm prefer old trees). However in
this example we are less interested in the secondary waves.
To show that the primary wave is an illustration of the theorem,

we must interpret the four hypotheses in this case.
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I : Homeostasis is the tendency of the wegetation in any one place to
develop into a stable state, stable with respect to time, that we can
name as grassland or forest,

I1 : Continuity refers to both the continuous erwvironment of soil and
climate, and the initial continuous wvariation of vegetation.

IIT : Differentiation means that at the end there are two distinct
states, mature grassland and mature forest.

IV : Repeatability means that if the initial conditions are wvaried

slightly then the wvalues s t_ may vary slightly but the

17 &0 Spr b
qualitative behaviour of the frontier remains the same. In other words
repeatability means that the whole space-time dewvelopment, or chreod

[22], will be stable under sufficiently small perturbations of the initial
conditions. Repeatability is an essential hypothesis for the existence of

the wave, because it implies s, # SE. Otherwise, if s, = Sy meaning

1
that the frontier had stabilised where it formed, and so causing no wave,
then this would be unrepeatable, in the sense that the initial conditions

must have been exceptional, and an arbitrarily small perturbation of them

could cause 51# s and hence cause a wave, in other words a

»
qualitatively differzent development,

MNotice that in this example of a primary wave, the wave could
be said to be caused by diffusion as the trees seed themselves into the
grassland. However the situation is not as simple as in the previous
examples, where the speed of the wave was constant and equal to the
speed of diffusion, because here the wave slows down and stops as the
frontier stabilises. One could make an elementary model of this
slowing down by using a linear differential equation with a diffusion term
balanced against a survival term, but this would not give insight into the
formation and the deepening of the frontier, as does the more
sophisticated catastrophe model. Also the two models give different
quantitative predictions, which would distinguish between them : for
instance in the elementary diffusion model the wave slows down
exponentially, but in the catastrophe model it slows down parabolically
(see §9). The catastrophe model is more likely to be correct, because

of the two processes involved, the initial seeding by diffusion, and the
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eventual development into mature forest by homeostasis, the latter is the
more significant,

To illustrate examples of kinematic waves that depend only upon
gradients and internal clocks and not upon diffusion, consider the effects
of latitude. For instance the spring blossoming of trees is a wave
moving north ( in the northern hemisphere) and in autumn the onset of
migration by birds is wawve moving south,

The reader will easily recognise the existence of many visible
primary waves of this nature in ecology, evolution, anthropology and
sociology. However in this paper we are more concerned with hidden
primary waves in developmental biology, that cause secondary waves of
physical manifestations in cells, that in turn may cause morphogenesis,

We shall therefore state and prove the theorem in this context.

5. PRIMARY WAVES IN EMBRYOLOGY.

We begin by enlarging a little on the meaning of the four hypotheses
in developmental biology. There is no need to give precise definitions at
this stage, because the terms are given precision by the way we choose
to translate them into mathematics in the proof of the theorem in 8
below. Suppose that E is a multicellular mass of tissue. We are
concerned with development of E during a particular time interval T.

I : Homeostasis means that each cell is in stable biochemical
equilibrium, an equilibrium that may change with time,

II : Continuity means that at the beginning of T we can represent
the chemical, physical and dynamical conditions in different cells by
smooth functions on E (the conditions inside a particular cell are
represented by the wvalues of the functions at the centre of mass of that
cell). In an embryo, where the tissue has developed from an egg by
cleavage, the continuity is inherited from the original continuity in the
egg, which was due to diffusion in the egg cytoplasm. Any slight
discontinuities that arise later tend to be evened out by subsequent
diffusion across the cell walls. In aggregates of cells like slime mold,
continuity means that the cells have sorted themselves out according to
continuous gradients during the aggregation process,

Continuity implies that neighbouring cells will follow nearby paths

of development whenever possible. We shall prove that where a
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frontier stabilises this is not possible, and so across the frontier
neighbouring cells will follow divergent paths of dewvelopment, and large
discontinuities will therefore arise.

I11: Differentiation means that, whereas at the beginning of T there
is only one type of cell (or, more precisely, a continuous wvariation
amongst the cells), at the end of T there are two distinct types, and no
continuous variation from one type to the other.

For simplicity we may assume that the tissue E is polarised, that
is to say all variation takes place in one direction only (like the
north—south line in the previous example in §4). Therefore for
mathematical analysis it suffices to consider a 1-dimensional space
interval S in that direction. Continuity means that at the beginning of T
the cells vary continuously along S. Differentiation means that during T
the cells at opposite ends of S develop continuously into different types.
At the end of T, since there is no continuous wvariation between the two
types there must be a frontier point in S separating the two types.

This implies a frontier surface in E, separating the two types of tissue.
If we can show that the frontier point in 5 moves, then this will imply
that the frontier surface in E moves,

IV : Repeatability means that the development is stable, that is to
say a qualitatively similar development will take place under sufficiently
small perturbations of the initial conditions.

Main Theorem. Homeostasis , continuity, differentiation and

repeatability imply the existence of a primary wave. In other

words a frontier forms, moves and deepens, then slows up and

stabilises, and finally deepens further.

Therefore whenever a frontier forms, it first forms off to one side
and then mowves as a primary wave through the tissue before
stabilising in its final position. Here by "final position" we mean the
position relative to the underlying tissue, which itself may be
undergoing morphogenetical movements, The theorem is illustrated in

Figure 1, and the proof is given in {8 below.

-
3

Remark 1. The theorem is qualitative rather than guantitative;
other words it is a result invariant under diffeomorphisms of space and
time., Therefore the theorem cannot predict the extent of travel of the

wave, and so in applications the extent must always be taken as an extra
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hypothesis, and verified experimentally as in §7 below. It appears that
some primary waves may travel a large distance, particularly

those associated with morphogenesis. For example in gastrulation of
some newts the ectoderm/mesoderm frontier travels from the grey
crescent at latitude 40°s (see Figure 12) to its stabilisation position
at 40°N , which is more then half the diameter of the blastula.

On the other hand the theorem does give quantitative predictions
about the initial deepening, and the final stabilisation, of the frontier,
because both these obey parabolic laws, and parabolicity is a
diffeormorphism—invariant (see §9). These laws should furnish easily
testable predictions.

Remark 2. The theorem gives no indication of whether the
primary wave is visible or hidden. In embryology primary
waves are generally hidden, in the sense of being experimentally
undetectable at the time, because they probably consist of the switching
on of gene systems, although their passage can sometimes be tracked

in retrospect by the grafting experiment described in §7 below.

6. SECONDARY WAWVES IN EMERYOLOGY.

The theorem gives no indication of whether or not a hidden
primary wave will result in a visible secondary wave after a time
delay; and if it does, the theorem gives no indication of the size of
delay, nor of the type of secondary wave. These must depend upon
extra detailed biochemical hypotheses about that particular systems that
are switched on, what the long term effects these systems hawve on the
cells, how these effects physically manifest themselves, and whether
there is a resulting energy release. Broadly speaking these are three
possibilities.

In order to describe the three cases it is necessary to be a little
more precise about what we mean by the word differentiation.
Differentiation can be used in two senses,firstly the hidden determination
of the cells into two types that takes place during the passage of the
hidden primary wave, and secondly the subsequent development of
physical difference between the two types that can be observed. In the

hypothesis of the theorem in the last section we used differentiation in
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the first sense, because this was the best word to capture hypothesis III,
the determination of distinct types. In this and the next section we use
differentiation in the second sense, because this is the more normal
usage. We now describe the three cases,

(i) There is no secondary wave of energy release, and the speed of

differentiation is slow compared with the speed of the wave. No release

of energy implies no morphogenesis. The slowness of differentiation
implies that any secondary wawve will probably be unnoticeable.
Therefore the only visible effect will be the slow appearance of the
frontier between the two types of tissue in its final position Sy The
original primary wave may never be noticed unless looked for.

(ii) There is no secondary wave of energy release, and the speed of

the differentiation is fast compared with the speed of the wave. Again no

release of energy implies no morphogenesis. However in this case the
swiftness of differentiation implies that the frontier between the two
tissues will appear before it has stopped moving, and so will present a
visible secondary wave. The frontier may not necessarily first appear
at Sy» because it may not yet be deep enough to notice, but it will
appear at some point 53, where s, < 53 < 52. It will then mowve
towards So» deepening and slowing down according to a parabolic law.
This means that near 52 the speed of the wave s is proportional to
,\/EF; (see §9 Corollary 3). The frontier then stabilises at S, and
deepens further.

This is a commonly observed phenomenon, and is often described as
recruitment. For example® a developing insect eye starts with a few
cells, and then enlarges by recruiting neighbouring epidermis cells.
The word "recruitment" implicitly suggests that the experimenter should
look for an "evocator" or an "organiser" emanating from the existing
eye cells causing the recruitment. However if this expanding frontier
of the eye were a secondary wave, then perhaps one ought to look for a
hidden primary wave passing some hours before, without necessarily
any organiser. In mammalian eyes the wave goes the other way:

instead of expanding cutwards the optic region shrinks in size.

* I am indebted to Peter Shelton for this example.
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(iii) There is secondary wave of energy release. In this case

there will be a dramatically observable secondary wave causing
morphogenesis. Geometrically the situation will be complicated by the
fact that not only is the wave moving through the tissue, but the tissue
itself is also moving and changing shape, with the former causing the
latter. It is also likely that the energy release preceeds differentiation.
Therefore differentiation may (or may not, as in cases (i) and (ii) above)
appear as another secondary wave after the morphogenesis. Therefore
two misinterpretations are possible : Firstly, it may be geometrically
unobvious to relate the visible secondary differentiation wave to the
hidden primary wave, because the morphogenesis will

have mowved the tissue around in between the two. Secondly it may be
tempting to conclude that the differentiation has been evoked by the
morphogenesis, or by the new position of the tissue, rather than by the
original hidden primary wave. Thus the experimenter's path may be
strewn with pitfalls, unless he manages to uncover the primary wave ,

which possibility we now discuss.

T EXPERIMENTAL DETECTION OF A PRIMARY WAVE,

Sometimes the hidden primary wave may mark a loss in
potentiality. In this case, the passage of the wave can be detected by
a standard grafting experiment, provided that the tissue is suitable for
grafting. For example one can detect the hidden mesoderm wave in
amphibian gastrulation by this method®,

Suppose, as before, that the wave starts at s, at time t, and

1 1
stabilises at s, at time t_. At this stage it is hidden and so there is

2
no detectable difference bitween the cells, but eventually at some later
time t3 differentiation will cause a physically observable difference that
we indicate by shading the regions marked A, B in Figure 2, At time
t‘t , although there is no difference, we can say that a-cells are
presumptive A-cells and b-cells are presumptive B-cells. The wave
travels from a towards b. The passage of the wave past a cell is

indicated by that cell switching from being a b-cell to being an a-cell.

*1 am indebted to P.D. Nieuwkoop [12] for explaining this experiment to

me.
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Figure 2. Detecting a primary wave by grafting.

] [e9] [eo §§/ .

. i

2 \

graft

51 \
NN

The switch occurs essentially because of homeostasis , as we explain in
the proof of the theorem in the next section. Therefore b-cells have the
potentiality to develop in either A-cells or B-cells. However a-cells
may only have the potentiality to dewvelop into A—cells, and we suppose that
this is the case. Therefore the primary wave marks the loss in
B-potentiality.

If we want to wverify that the hidden primary wave has reached
position s at time t, then at time t graft two small pieces a, 8 from
just behind and just ahead of s onto b-tissue, well clear of the wave, as
shown in Figure 2. The B-cells are influenced by their new position to
remain b-cells, and so by time t3 develop into B-cells, causing the
B-graft to disappear. Meanwhile the c-cells have already switched and
lost their B-potentiality and so by time t\,3 the o-graft stand out as a

patch of A against B.
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8. PROOF OF THE THEOREM,

We follow the conceptual ideas of Thom [18, 197. As explained
in {5 above it suffices to use a 1-dimensional interval of space S,
transverse to the forming frontier. Let T be a time interval
encompassing the development. Let C = SxT be the rectangle of space-
time. Let X dencte a manifold representing the states of a cell. One
can envisage X as a bounded open subset of n-dimensional euclidean
space Rn, where n may be wvery large (possibly several thousand). The
coordinates {xi; i=1,2,...,n} of a point x € X may represent not only the
concentrations of the different proteins in the cell, and the rates of change
of those concentrations, but also may include wvariables represzanting various
physical characteristics of the cell, its membrane, the cell dynamics, etc,

Consider a cell at the point ¢ € C. By Hypothesis I this cell is in
homeostasis. We choose to translate homeostasis into mathematics by
assuming that the biochemistry of the cell can be modelled by a gradient
dynamical system on X

-
® = — grad Vc’

where Vc : X = R is a smooth function and R denotes the real numbers
(see Remark 3 below for the meaning of this function). We choose to
translate Hypothesis 11, continuity, into mathematics by assuming that
VC can be chosen to depend smoothly on c. Therefore we have a
function

Vi CxX = R
given by V(c,x) = Vc(x). We choose to translate Hypothesis IV,
repeatability, into mathematics by assuming that V is gener‘ic*. Let
M © CxX dencte the set of stationary values of V, given by W=0, where
vV denotes the gradient with respect to X, Let G denote the closure of
the subset of minima, which are given by V2V positive definite, where
v2 denotes the Hessian with respect to X. Then by smooth genericity,
M is a smooth 2-dimensional surface in the (r+2)-dimensional space CxX,

and G is a subsurface of M with boundary 8G. Let y : M = C denote the

* Generic means in general position, that is tﬂ? say the map ¢ =V _ maps
C transverse to the natural stratification of C (X). Generic V's are
open dense in the space of all V's, and therefore both stable, and
permissible to use as models.
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map induced by the projection CxX = C, By Thom's classification
theorem of elementary catastrophes [18], the only singularities of y are
fold curves and cusp points, since WV is smooth and generic. The
boundary 3G consists of fold curves and cusp points.

By nomeostasis the state of cell at ¢ is at a minimum of VC, and
therefore represented by a point

ofc) EG N x_ic.

-

In other words yo = 1. The interesting point is that, whereas y is

Therefore ¢ is a section of ¥y,

smooth (induced by projection), o may be forced by y to be discontinuous.
We now use Hypothesis III, differentiation, to analyse this discontinuity
and show, using I and IV again, that it implies the primary wave.

Let S = fso,sa:l, Tu= [to,ts]. Let us analyse the continuity of g
on the boundary 3C of C = SxT. Firstly g is continuous along the side
soxT because a-cells are developing smoothly into A-cells, Similarly
o is continuous along 58xT because b-cells are developing smoothly into
B-cells. MNext o is continuous along the side Sxto, because, by
Hypothesis II, continuity, we may assume that at the beginning the tissue
is continuous.

Finally ¢ cannot be continuous along the side SXtS’ because, by
Hypothesis III, differentiation, at the finish two distinct types of cells
A, B have developed, with no continuous wariation between them. By
Hypothesis II, continuity, A must spread continuously from one end, and
B from the other, towards some point of discontinuity, which is, as yet,
undetermined.,

Figure 3 shows the partial section of G over 3C that must exist
ready to receive the map ¢ : 3C - G. Now comes the problem of
extending ¢ to the interior of C. First we ask the simpler question :
what singularity must the map % : M = C have over the interior of C?
Since M = G, M must extend the section over 3C shown in Figure 3.
Therefore by the classification theorem M must have at least one cusp
singularity over the interior of C. A single cusp would be sufficient.

Moreover a single cusp is gualitatively the simplest solution of the
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Figure 3. Section of G over the boundary of SxT.

—
So ®'T time

extension problem, and we can justify the simplest solution by again
appealing to Hypothesis 11, continuity; in other words we assume minimal
discontinuity subject to Hypothesis I1I, differentiation.

In Figure 4 we illustrate two examples of a surface M owver C, each
with one cusp, and each extending the given section over 3C. In each
case the shaded subsurface indicates M-G (representing saddle-points of
V, in other words unstable equilibria of the biochemical dynamic, and so
not realisable by homeostasis), If we ignore the product structure of
space-time C = SxT, then the two pictures are qualitatively equivalent,
Howewver if we take note of the product structure, then Figure 4a is
exceptional because the time-axis at the cusp point G coincides with

the cusp-axis. Hypothesis IV, repeatability forbids this exceptional
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Figure 4., The graph G of homeostatic states.

G

(a) non-generic

(b) generic
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situation and so Figure 4a is ruled out,

The reader may ask why do we choose the rather elaborate
Figure 4b, and so we must explain. Firstly the direction of the
cusp—axis must have a non-zero S-component (to avoid the fault of
Figure 4a) and a positive T-component, because the frontier between the
differentiated tissue must occur inside the cusp. Probably in most cases
the T-component will be greater, but to emphasise both components in
Figure 4b we have drawn them approximately equal, in other words in
the perspective drawing of C we have drawn the cusp-axis inclined at
45° to the time-axis at Cy Secondly, as the two branches of the cusp

widen out, there will be a unique first point c_ (on the branch for which

t is greater) where the tangent is parallel to tie timetaxis. These two
points ::1 ,02 will mark the beginning and ending of the primary
wave, as we shall now prove. We have merely drawn Figure 4b so as
to emphasise the qualitative features of these two points.

We now plot the development of each cell by lifting its time-path
in C up onto the graph G. Since G is the graph of homeostatic states,
the lifted path will represent how the state of the cell changes, in other

words will represent its development—path (see Figure 4b).

Since homeostasis is represented by a differential equation x = =W/,
the development path will be a continuous path on G, held continuously in
stable equilibrium by the differential equation, unless the path happens
to cross 3G. Therefore, in the language of Thom [187,the changing
state will cbey the Delay Rule. Now 3G is the fold curve of M lying
above the two branches of the cusp. Suppose that the time-path of the
cell at s crosses the branch c102 of the cusp at the point ¢ at time t
(see Figure 4b). Then the development-path of s will cross 3G at the
point P above c, and at this point the homeostatic stability breaks down,
because the corresponding minimum of Vc has coalesced with a saddle
(represented by M-G), and disappeared. Consequently the homeostatic
differential equation comes into play and carries P rapidly to @, which
is the unigue new stable equilibrium on G above c, in whose basin of
attraction P lies (see [26]). The rapid change of state from P to Q

caused by homeostasis is called a catastrophe, or catastrophic jump; this

is the moment when the b-cell at s switches into an a-cell. What we

have previously waguely refered to as "switching on of gene systems" is
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represented mathematically by the fast flow from P to Q along an orbit
of the differential equation in X representing homeostasis. That was
why in the introduction and in §7 above we remarked that the switch
occurs essentially because of homeostasis. Therefore at time t the
cell s marks the frontier between a-cells and b-cells, namely the
position of the wave. The depth of the frontier is represented by the
length PQ. The catastrophe occurs in all cells lying in the interval

s, <s<s_ during the period t

1 2 1

branch c1c2, and this defines the primary wave. Therefore c1c2

<t< t2, as their time-paths cross the cusp

determines the track of the primary wave in space-time
Meanwhile cells for which s<s1 suffer no catastrophe, but develop from
a-cells into A-cells along a smooth development-path. Similarly cells

for which s> 52 develop smoothly from b-cells into B-cells., The

various development paths are shown in Figure 5.

Figure 5. Development paths of cells on G,

5
3

LT T 222222;7
R AI T P THIT Z{ "/, |stabitisation
/// /r_-tma\“ N 2 V4
S
A R
YA A
NGO ITE I B EF AL IO CGL,

time t

to 3



PRIMARY AND SECONDARY WAVES 91

From Figure 5 we can read off the qualitative features required in
the statement of the theorem, as follows :
At time t1 the frontier first forms at S, -

Between t_I and t2 the frontier moves from s, to 52 and deepens.

At the time approaches t2 the frontier slows up, and approaches 52.

At t2 the frontier reaches 52, and stabilises,

After t2 the frontier deepens further,

This completes the proof of the theorem. Before we proceed to
quantitative features of the theorem we make four remarks,

Remark 1. Sometimes the wave does not begin in the middle of the
tissue, but on the boundary of the tissue, so that the tissue appears to
""grow into" the frontier. This seems to be the case with slime mold
(see §15 below), and with the development of chicken wings, for instance.
In this case the mathematics is simpler because the space-time track
of the tissue does not cross the cusp point, but only the fold curve. In
fact there may not necessarily be any cusp point at all. In Figure 5
the slime-mold grex would be represented by [s,ssj with tip at s and
tail at Sge At time t the wave would begin at the tip, and then proceed
along the grex to stabilise at S, at time t2. The front part [5,52]
eventually develops into stalk-cells A, and the back part [52,53] into
spore-cells B.

Remark 2. Not all frontiers are formed by primary waves of this
type, because in some cases our translation of the four hypotheses into
mathematics may not be valid. For example in the gastrulation of birds
and mammals, or in mixing experiments [1,10], the frontier is caused
by migration of different types of cells, sorting themselves out, whereas
we have assumed that the cells stay more or less in the same place
relative to one another in the tissue. However in some of these cases
a primary wave may already have taken place in some underlying
gradient, and the migration of cells up or down the gradient may be
merely a secondary wave,

Remark 3. There was one drastic simplification that we made in
the proof of the theorem, in the way that we chose to translate
homeostasis into mathematics. It may well be reasonable to represent
homeostasis by a dynamic D on X, but it is not obvious that D should

be a gradient dynamic, x ==N. In special cases V may represent some
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potential energy that is minimised, and then it is reasonable. But in
general D may be non-gradient, particularly when the cell contains
biological clocks. Even then in some cases it is technically possible to
reduce D to the gradient case, by chosing V to be a Lyapunov function
for D (see[18, 26]). However in other cases this may not be possible;
frontiers arising from, or associated with turbulence, for instance,
would probably not behave so simply.
Rermark 4. We have drawn Figures 3, 4, 5 as if X were

1-dimensional, and as if

M c CxR C Rs g
In fact this is not true because X is an open subset of Fin, where n may
be very large, and therefore more precisely

M c Cxx = RSTN |
However this does not alter the fact that M is 2-dimensional surface,
and therefore our diagrams are indeed rigorous pictures of the map
¥ : M = C. Moreover Thom's classification theorem [18] can be
modified [26] in an important manner for this context, as follows :

If ¥y : M -~ C has a cusp catastrophe, then in the neighbourhood of

that point we can choose a map 1 : X = R such that

1xm : CxX - CxR
throws M diffeomorphically onto the surface pictured in Figure 4b.
Moreover 1 can be chosen to be the projection of X onto one of the given
axes of Rn, that measure concentrations etc. In fact we can choose any
axis not perpendicular to the tangent to 3G at ac, . Let us call the
chemical or physical property that this axis measures, a morphogen.
Then the vertical axis in Figures 3, 4, 5 measures the morphogen. The
morphogen need not be unique, and may only be an artifact. But if the
morphogen is easy to measure, then it may be useful for experimental
predictions., It is remarkable that Thom's theorem guarantees the

existence of a morphogen for each developing frontier.

9. QUANTITATIVE ASPECTS OF THE THEOREM.,

From Figure 5 we can deduce some guantitative estimates about
primary waves. The estimates are computed to first order in

small guantities, and are therefore only accurate near the beginning and
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the end of the wave.

Corollary 1. [Initially, when the frontier first forms, it is moving at

constant speed,

Proof. The path of the wave is the branch c1 ::2 of the cusp, which,

rnear Sy to first order, can be replaced by the tangent at cy.
Corollary 2. Initially, when the frontier first forms, its depth

increases by a square-root law, in other words the depth of the frontier
is proportional to .a’t—t1 (and hence also to ,.Js~s1).

Proof. At time t the depth of the frontier is equal to the catastrophic

jump PQ in Figure 4. Therefore we must compute PQ. Choose origin

0 at oc,, the point of M over the cusp point ¢ Choose two axes E,n

1 17
at 0 as follows : £ is measured along the tangent at 0 to 3G in X,
oriented towards P, and 1 is measured along the tangent at 4 to the
cusp in C, Let K denote the (£,n)-plane. Then K is the osculating
plane of 3G at 0. Therefore, by genericity, and ignoring third order
terms, 3G lies in K and has equation n = kga, where k>0, Therefore P
satisfies £ = +,/7/K. Meanwhile Q satisfies £ = —-2,/7/K, because M is
the diffeomorphic image of a cubic surface, namely the canonical cusp
catastrophe. Therefore PQ = 3,/7/k. But n is proportional to t-t 4» and
hence PQ is proportional to .JE , as required.

Remark. The initial position and movement of a dewvelopmental wave
may be difficult to observe, because of the initial shallowness of the
frontier. However it might be possible to find the initial position by
using Corollary 2 to exterpolate backwards (and hence find the organising
centre, if the wave happens to emanate from a point).

Note that Corollary 1 also remains true for any secondary wave.
However we should not necessarily expect Corollary 2 to apply to a
secondary wave, because the two waves are of a totally different nature :
the primary wave marks the frontier between two diverging types of
tissue, whereas the secondary wave makes the onset of a secondary
effect within one type of tissue. Therefore the initial movement of the
primary wave may be difficult to observe, whereas that of the secondary

wave may be easy to observe - for instance the first invagination in

gastrulation (see §10 below).
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Corollary 3. Eventually, just before the frontier stabilises, it slows

2
down parabolically. In other words (52_5) is proportional to (te—t) , and

the speed is proportional to (tg—t).

Proof, By genericity the curve €4S, touches the time axis at c5 with
quadratic tangency. Therefore near Cy» ignoring third order terms, the
curve has the equation
(s,-9) = htt)°,

where h>0, The speed is given by differentiating :
.
5 2h(t2—t) .

This completes the proof of Corollary 3.

Remark. Corollary 3 should be easy to observe and wverify. If there
is no morphogenesis, then the same result will hold for any secondary
wave, Therefore in a recruitment phenomenon, for instance, the
parabolic law might provide a good test to distinguish whether it was a
secondary wave or the result of entrainment.

If there is morphogenesis, then the displacement of cells relative to
one ancther may upset the parabolic law for the secondary wawve, but
Corollary 3 may nevertheless yield other guantitative predictions - see
for example the estimate for stalk diameter in the slime mold fruiting
body, in §16 below.

Energy release. Some morphogenetical movements begin slowly,
and build up to a recognisable climax before finally dying down. This
can be seen most clearly in time lapse films, and the reader is
especially recommended to see the two Gottingen films of Luther
[1{lon gastrulation and neurulation, and Gerisch [7] on slime mold. For
instance in [1-0 gastrulation begins by invaginating slowly, then the tissue
begins to roll over the dorsal lip, then pours over the entire circle of
blastopore lip, until it eventually slows down, and the blastopore gently
closes., Similarly neurulation begins with the neural folds appearing
slowly , then they rear up and the neural tube snaps shut in the middle,
and the closing process runs towards both ends, which eventually seal
themselves more gently. In [7] the slime mold fruiting body heaves
itself slowly off the ground, then accelerates and rises rapidly up its
stalk, then slows down, and ewventually the knob at the top gently

disappears.
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We shall now show, by computing the energy released, that this is
the normal pattern for a morphogenetical movement arising from a
secondary wave,

Note that in the films it can also be observed that the gastrula
gives a final heave before the blastopore closes, and the slime mold
fruiting body gives a hiccup halfway up, but these are subsidiary
frictional effects that we shall explain later.

Assuming that the primary wave begins at time t, and ends at time

1

t let

V(t)

D

1]

speed of primary wave at time t, t1<t<t2;
A(t) = area of wave-front at time t, 1:1 <t<t2;
e(7) = rate of energy-release by a cell at time—interval r after

the primary wave has passed it. We may suppose that ety =0
outside an interval ﬁ1<‘1‘<62, where O<61<ﬁ2, and where 61 is

the delay between the primary and secondary waves, and [51 ,52]
the period during which energy is released by the secondary effect.

Lemma 1. The total rate of erergy release at time t, where

" ; :
t1 + 51<t<t2 62, is given by

t=5
E(t) = J‘ 4 ATV Te(t=T)d T
t—62
Proof. The number of cells crossed by the primary wave in the
interval [1,7 + d7] is A(T)V(=)dr, and by the time t each of these is
still releasing erergy at the rate e(t-r), Integrating gives the lemma.
In Figure 6 we sketch the qualitative shape of the graph of E. The
assumptions on which the sketch is based are as follows : V is initially
constant near t1 » by Corollary 1, and eventually decreases linearly to
zero at t2, by Corollary 3. If we assume that the primary wave
emanates from a point, and that the wave—front initially expands linearly,
then we deduce that A starts from zero at t1 and initially increases
parabolicially, in other words proportional to a square law. Eventually
A becomes constant as the frontier stabilises at tg. We assume the
secondary effect e starts suddenly at 51 , and then decreases linearly to
zero by 62. It can be shown, by using the lemma to integrate these

assumptions, that E both begins and finishes proportional to cube laws.
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Figure 8. Graph of energy released by a secondary wave,

- ——————

Energy

t Primary wave t t.+5 Secondary wave t.+5

Summarising : this characteristic pattern of energy release during a
morphogenetic movement might provide a useful clue that the movement
was the secondary effect of an earlier hidden primary wave.

George Oster suggests that the energy released by individual cells might
be observed by measuring the heat loss microcalorimetrically.

The ripple ahead of a wave., Consider a fixed time t during the

primary wave, t1<t<t2. The state of the tissue is obtained by
lifting the section Sxt of C up onto G in Figure 5. Consider the

wvariation in the state of the cells as the frontier is approached from
either side. On the a-side the state is approximately constant, and so
the cells are homeogeneous, but on the b-side the wvariation is parabolic
as the frontier is approached.

In some cases this phenomenon might be repeated visibly in a
secondary wave., For instance, if we had a situation as in 86(ii) above,
where the secondary wave was differentiation, then the phenomenon might
be visible as a slight ripple ahead of the wave. For example, suppose
the expanding frontier of the insect eye were a secondary wave. Then
inside the frontier the already recruited eye cells should appear relatively
homogeneous, but outside the frontier, the epidermis cells just about to
be recruited might show physiological signs of the impending recruitment.
In mammalian eyes the effect might appear on the inside of the frontier,

because the wave goes the other way.
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APPLICATIONS

10, GASTRULATION OF AMPHIEIA .

For the mathematical reader unfamiliar with gastrulation a
recommended introduction is to read Balinsky [1, Chapter 8], and to see
the film [11 from the Gé&ttingen film library. The following diagrams
are taken primarily from [1,20]. Figure 7 shows photographs of what
gastrulation looks like from the outside, while Figure 8 gives diagrams of
the main morphogenetical movements going on inside at the same time.
Figure 9 shows supporting photographs of sections., Figure 10 gives
Vogt's drawings of the 3-dimensional flow of mesoderm cells from the
surface into the interior, and Figure 11 the resulting flow of the
mesoderm mantle, finishing with its position at the end of gastrulation
and beaginning of neurulation, with a photograph of the corresponding
section. Figures 12 and 13 give Vogt's detailed fate maps. Figures 14 and
15 are diagrams of the subsequent neurulation, leading to the tail bud stage
in Figure 16, Figures 17 and 18 show part of the normal tables for newts [9]

and frogs [17], giving an idea of the timing involved.

Figure 7 Changes in shape of the blastopore and closure of the blastopore during gastrula-
tion in a frog. From Bal in:;ky M sPa i 8;]



98 E.C. Zeeman

ammal pale

blastacanl
- .

~

~

o dorsal lip of
blastopare

blastopore

archenteron

dorsal ip of
blastopore

lateral lip
of blastopare

blostocoel

dorsal lip of blastopore
s

yolk plug

lateral hp of
‘blastopare

remains a:
of blastocoel ~

vantral hip of blastopore
Figure B Four stages of development ol a frog embryvo; A, AL late blastula stage; B, B,
beginning of gastrulation; C, G, middle wastrula stage; 1, 1, late gastrula stage (semidiagram-
matic). Drawings on the left represent the cmbryos ent in the median plane; drawings on the
right represent the sume eimbryos viewed at an angle from the dorsal side (A, B, C) or from
pasterior end (D). From Balinsky [1, p. 181]
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Figure 100 Trajectories of the movements of parts of the marginal zone during gastrulation
in amphibians. Thick lines show movements of cells on the surface of the embryo; thin lines
show movement of invaginated cells. (From Vogt, 1929.) [20, p. 431] and [1, p. 194 ]
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embryos @)before, (a') during, and(b) after, gastrulation. The top three
diagrams are for the newt, and the bottom two for the fire-bellied toad.
The plus sign marks the track of the vegetal pole, A the track of the
initial invagination point, B the track of the point opposite the boundary
point B* of the proximal surface, C the midpoint of the notochord, and D
the presumptive ecto/mesoderm frontier. Notice that the final position
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beginning of the neural fold. From Vogt [20, p. 6571
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Figure 13. Diagrammatic fate map for urodeles (newts and salamaders)
at the beginning of gastrulation, as seen from the outside (a) from below
and (b) from the side. The symbols AL,B,.... indicate the same as in
Figure 12. Invagination is beginning at A, and extends slit-shaped along
the short arc through A shown in (a). Notice that the boundaries between -
presumptive somites are approximately circular arcs centred at A, We
have joined these by dotted arcs running through presumptive notochord to
indicate the primary wave-fronts. From Vogt [20, p. 392).
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[1, p. 198]



£y

« Zeeman

rar veirle
#od by il pouches

builge caused by gronephie
|

Frl baard
e ruhment

position of tuture mouth

adhesive organ —

pronephros
war veucle :

spinal cord
g ) ——
midbramny

forebrain,

eye veucle -

rudiment of hypephysis 3

position of future muurh

rudiments of skeletal

wisceral arches

anus
adhesive argan
epidermis ="
subchorda spinal cord
gill pouches 1
. | cavity of midgut r notochord
. . |
brain ‘.l"'-.-nlﬂ T -
/ N
./
eye salk o
|
\ hindgut
rudiment of hypophysis N ‘ oA
posihion of future mouth =
ioaegm\ -
adhaive organ s
sudiment of heart

= mesoderm
liver diverficulum
epdermi
Figure 16

e shus ol tha

yolky endoderm

AW TP
[ IETRNTIN

canbirv o i an canly Ll bod staee
TR R

VoEaternal view B s cinlasooaath
satnie i o cnt e the medon plas



PRIMARY AND SECONDARY WAVES

24

Figure 17. Normal development of the Japanese rnewt, showing stages

of neuralztion znd formation of somites. From Koyama [9, o)) -'p:,’,\—';].
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Having described the morphogenesis pictorially, we now get down to

the main business of discussing the causes, Gastrulation can last from a
few hours to a few days, depending upon the species and the temperature
(see Figure 8 and Figure 18 (Stages 10-13), and {14 below). During this
period there appear to be two local physiological processes going on at the
same time, which at first sight seem to have almost the opposite effect at
cell level :

[@D)] cells flattening,

2) cells submerging.
However, whereas process (1) goes on uniformly in all cells of the
northern hemispherical shell throughout gastrulation, process (2) does not
happen simultaneously everywhere., Our main hypothesis will be that
process (2) is secondary wave. Therefore the two processes have radically
different global effects upon the shell, as follows :

(1) Uniform expansion.

2 Rolling changes of curvature,.

(1) The expansion process. During gastrulation the northern

hemispherical shell expands to about twice its area and half its thickness,
due to the outer surface cells flattening themselves, and to intercalation
amongst the cells of the lower layers, until the shell is only two cells
thick [1, Chapter 9], Moreover this is an active process, because
Holtfreter has shown that if the gastrula is prevented from folding inwards
then the expansion will force it to fold outwards [21,p.442].

(2) The wave process. We begin with the fact that the northern

hemispherical shell differentiates into ectoderm and mesoderm (we are not
concerned with the southern hemisphere because it is already different,
being yolky, and destined to become endoderm). Therefore, by the
theorem, the differentiation will cause an ecto/mesoderm frontier to form,
and mowve as a primary wave. The final position of the wave on the outer
surface is a circle §, whose position can be read from the fate maps
(Figures 12 and 18). On the dorsal side & goes through the point D, and
forms the frontier between presumptive neural plate and presumptive
notochord, while on the ventral side § goes through D' and forms the
frontier between presumptive epidermis and presumptive tail mesoderm.

For the beginning position of the wave we need a hypothesis :
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Hypothesis 1. The primary wave begins at the point A on the

dorsal side at the bottom of the grey crescent.

It is no accident that A is same point where several hours later the
gastrula first begins to invaginate, because the latter is the beginning of
the secondary wave (see Figures 7(a), 8(b), 9(c), 12(31), 13 and 20).

Let A' denote the point on the wventral side marking the presumptive
meso/endoderm frontier, and let a denote the circle on the ocuter surface
through A and A', From Figures 12 and 13 it can be seen that a is
almost a parallel of latitude.

After beginning at A the primary wave then spreads simultaneously
in the following directions : firstly east and west round the circle a
towards the ventral side, secondly northwards up the dorsal side, and
thirdly inwards from the distal (outer) surface to the proximal (inner)
surface of the northern hemispherical shell. In Figure 19 we illustrate
this on a simplified version of the fate map if Figure 13(b), showing

successive positions of the wave on the distal surface.

animal

Figure 1% Fate map. pole

ectoderm

Ventral side Dorsal side

‘A ;
SrdEdasA , wave begins

wvegetal
pole

The extent of travel up the dorsal side, AD, is greater than that on
the ventral side, A'D', and it differs in different species. Examples of

the latitudes of A and D are as follows :
Fire-bellied

Newt toad Axolotl
Wawve begins at A 40°s 255 30°s
Wave ends at D : 40°N 20°N 20°N.

The figures for newt and toad are from Vogt (Figure 12), and those for
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axolotl are due to Nieuwkoop [12]. WNieuwkoop confirms that a hidden
wave of mesoderm determination can be detected in axolotl by the
grafting experiment described in §7 above. We return to the timing of
this wave in §14 below.

Before we leave Figure 19 there is a small point to be mentioned
We have labelled the entire region between o and 5 as mesoderm, whereas
in the literature there is some ambiguity as to whether the immediate
neighbourhood of the point A should strictly be called mesoderm. More
detailed fate maps tend to leave the meso/endocderm frontier undefined
near A, as for example in Vogt's fate maps in Figures 12 and 13.
However we suggest that the ambiguity may be resolved by considering
the 3-dimensional picture rather than merely the 2-dimensional distal
surface, and shall treat this in detail when we come to analyse neurulation
in §12 below, and in particular in Figure 23.

We now come to our main hypothesis.

Hypothesis 2. There is a secondary wave of cells submerging.

The time delay between the primary and secondary waves is
discussed in §14 below. For example in the case of the frog (Figure 18)
we estimate the delay is about 16 hours.

Remarks about submerging. Recall that submerging means that the

cell decreases its free surface, and increases the proportion of surface

in contact with other cells, From the cellular point of view this is a
complicated process, but the advantage of dencting it by a single word is
that we can then more easily describe the process proceeding as a wave
across the tissue. Howewver, at the same time, we must be cautious about
the dangers of over=simplification, because different cells may submerge
in different ways. For instance the submerging behaviour may depend not
only upon the gene systems that have been switched on by the primary
wave, but also upon characteristics of the cell membrane, which may in
turn depend upon the cell's position.

For example consider the beginning of the secondary wave : this
occurs at the point A because by Hypothesis 1 the primary wave began at
A. The submerging cells remain attached to the surface, causing the
surface to invaginate, and this is the beginning of gastrulation. The
submerging cells are known as flask cells because they become elongated,

as can be seen in the diagram in Figure 20(a) and photograph 20(b).
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Figure 20(3) Median section through the blasto-
pore region of an early gastrula of a newt, showing
the cells at the bottom of the pit streaming into the
interior. (After Vogt, 1928.)

From Balinsky [1, p. 187 ]

BT () O
Figure 20(b) . L
Frit, evist. Gastrulationsbeginn, sagittal, etwas schrig geschnitten. Dorsale Lippe
paramedian getroflen. In ihr deutet kleinzelliges Material der inneren Runedzone, welches nach
mmen sortudringen scheint, die erste M i an. Ur il BRRZ You ento
sermalen. 2, T. faschenformigen Zellen gebildet, — Vergr. 505,

From Vogt [20, p. 510]

Figre 21 External surface of cells i inating in the amphibian bl {electron-
micrograph). Cr, Crypts formed at the surface of the cells; V, vesicles pinched off at the bottom
of the crvpts: P, pi t les; B, cell b wndaries; Y, yolk platelet.

From Balinsky[1, p. 215]
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Possibly the most important part of the underlying biochemical processes
in a flask cell may be associated with the contraction near the free surface.
By important we mean where the energy is released. The resulting
wrinkling of the free surface is shown in the electronmicrograph in Figure
21. This contraction may be responsible for the squeezing of the nucleus
and most of the cytoplasm towards the other end of the cell; and this, in
turn, may cause the membrane at the other end to bulge out like a balloon,
provided it is sufficiently elastic, Hence the characteristic flask-shape.
Therefore the amoeboid action of the submerging flask cells streaming into
the interior (Figure 20) may not be an active process at all, but merely
the passive conseqguence of the free surface contracting and the fact that
the cells have an elastic membrane. All the cells arcund the circle o

(the presumptive meso/endoderm frontier) submerge in the same way .

By contrast, the cells further north on the blastula submerge less
dramatically, as can be seen by comparing the development of isolated
fractions [1, Chapter 9]. Possibly this is merely because they may have
less elastic membranes at the time of submerging. Consequently when the
secondary wave hits them they do not balloon out like flask cells, but
exhibit more moderate changes of curvature. One might be tempted to say
that they submerge more gently, except that the forces involved may be
just as powerful.

Again cells on the proximal surface may submerge differently to those
on the distal surface, as we shall see when we come to discuss neurulation
in §12 below. But the common feature of all submerging cells is that they
push and pull on their neighbours. Indeed, as Gustafson and Wolpert [8]
have pointed out, the forces that shape the embryo must necessarily
originate from cells pushing and pulling on their neighbours, and this is
essentially how a secondary wave of submerging cells causes the rolling
changes of curvature that produce morphogenesis. Therefore, from the
global point of view, the most effective way to describe the results of the
secondary wave may be mathematically in terms of changes of curvature,
Since curvature will be central to our discussion we digress in the next
section to give an elementary mathematical treatment of curvature. But

first a remark about the dorsal lip.
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The dorsal lip. Mesodermal tissue starts rolling over the dorsal
lip about 2 hours after the initial invagination. The main cause appears
to be the expansion process (1). Therefore mathematically it should be
possible to model the resulting surface flow as the gradient of a potential
satisfying Poisson's equation, in other words Laplace's equation with a
sink at A and source distributed uniformly over the whole surface north
of the circle. This explains why initally there is a flow of tissue from
ventral to dorsal side.

The secondary wave of Hypothesis 2 now comes into play, causing
the inwvagination to follow the primary wave both east and west round g,
forming the circular lip of the blastopore (shown in Figure 7). The
resulting gradient flow on the surface now has a circular sink, as shown
in Figure 10. It might be possible to use Poisson's equation to
simulate on a computer the time-development of the whole surface flow.

Now consider what happens to the tissue when it rolls over the
dorsal lip. First we must explain why the lip itself starts fairly blunt
(Figure 20) and then becomes sharper as the flow progresses
(Figures 8, 9, 11, 12). We shall show that this is due to the
preservation of mean curvature of the shell. We shall then show that
the secondary wave, by changing the mean curvature, causes first the
concavity of the archenteron roof, and later the formation of notochord

and somites during neurulation.

1. CURVATURE.

Let S be a closed surface, and P a point on S. Let "‘1 " r~2 be the

principal radii of curvature of S at P.

1= e

Example 2. Let Sbe the surface of the mid-gastrula (Figures 7(d), D),

Example 1. If S is a sphere of radius p then at each point r

9(d), 10, 11(a), and 18 (Stage 11)), and let P be a point on the dorsal
lip. If p is the radius of the gastrula, then the average radii of dorsal
lip and blastopore are approximately -:; and £ .  Therefore the

4
P
principal radii of curvature at P are '%, i (negative because the
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radius of the blastopore points outwards, in other words out of the tissue).

Define the gaussian curvature of S at P to be 1 . In example 1

2 1
the sphere has positive gaussian curvature, and in exagnple 2 the dorsal
lip has negative gaussian curvature.

Define the mean curvature y of S at P by

1
In exarmple 1 the sphere has mean curvature — and in example 2 the
o

dorsal lip also has mean curvature

It is no accident that these are the same as we shall prove in Corollary 2.1
below.

Suppose now that S is the distal (outer) surface of a shell of
thickness e, with proximal (inner) surface S*, We have in mind the
northern hemispherical shell of the blastula (Figures 8, 9, 12). Define
the excess e at a point P of S by

_ incremental area of distal surface
incremental area of proximal surface

Lemma 2.e = 1 + 2eu .

Proof. Let O 02 be the two principal centres of curvature of S at P,

1 El
corresponding to the principal radii of curvature rys r'2. Let a, ,a1*

be two small arcs, centred at 0, and subtending the same angle at 01 i

1
on the distal and proximal surfaces, respectively, and therefore of

radii Fys Fy=es Therefore
24 " gl
a_*=r—e=<1“;:) E
1 1 1

Similarly let aE,aE* be two small arcs perpendicular to a, ,a1*, centred
at 02. Then a\1 a2, aj*ag' are incremental areas on the distal and
proximal surfaces, respectively.

Therefore

|

-1 c =1
=) (1-2)
r‘1 l"2

1 2
1+ e(—-ll ),neglecting ¢ ,
" T2

=1+ 2ed .

This completes the proof of lemma 2.
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Corollary 2.1, If p, 91 » Py are the radii of gastrula, dorsal lip, and

blastopore at any moment during mid-gastrulation, then

Proof. Consider a piece of mesodermal tissue as it rolls over the dorsal lip.
Since the expansion process (1) is uniform and gradual, and since the secondary
wave (2) has not yet hit this piece of tissue, we may assume that both the excess,
e, and the thickness, ¢, remain approximately constant® as it rolls over the

lip. Therefore by the lemma the mean curvature | must also be constant,
1

1
Before the tissue rolls y = =) and as it rolls y = >

1 1

(— - = ). Hence the result,
Py 0y

Remark., As the blastopore closes at the end of gastrulation p2 becomes

very small, but P, cannot become too small, because it must at least be
greater than the thickness. Therefore U must become smaller. Therefore ¢
must become greater. This explains the thickening of the lips as the blastopore
closes (see Figure 11(f)). Also furrows are often seen on the surface
radiating from the closing blastopore, as the distal surface compersates for

its increasing negative gaussian curvature. In particular this is probably
responsible for the posterior end ¢f the neurulation furrow (see Figure 14 (A')
and §12 below).

The archenteron roof. Once the mesoderm has rolled over the lip and

got inside it is called the mesoderm mantle, Its mean curvature has changed

from being positive to negative, because the distal surface which used to be the
convex side of the shell, has now become the concave side, and forms the
archenteron roof (see Figures 8,9,10,11,12,14), What causes the change of sign
of the mean curvature is the secondary wave of hypothesis 2, progressing along
the distal surface shortly after it has rolled over the lip. As the secondary
wave hits each cell it will begin to submerge, but it cannot submerge very far
because by this time the mesoderm mantle is only two cells thick. Therefore
there is no chance of any dramatic behaviour such as displayed by the initial
flask cells, which have the luxury of a thick yolky mass of cells in which to
submerge. Therefore the main effect of the secondary wave at this stage will
be the reduction of free surface membrane (see Figure 21) in other words a

reduction in the area of the

* W take account of the gradual decrease in the thickness, g, due to the

expansion process in §14 Figure 29,
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distal surface, and this effect will persist while the mesoderm mantle
climbs up over the archenteron roof (Figures 10, 11, 12), If the distal
surface area is reduced by a factor A, then the excess, e, will also be
reduced by ). We can therefore compute L by Lemma 2.

Corollary 2.1 If p is the radius of the gastrula and & the thickness

of the mesoderm mantle, then

4e
p

m

A=1= .
Proof. By the lemma, before rolling over the lip the excess is

& =14 28
[

After rolling the excess now becomes
Ra =t 2¢
8= p=2¢
because the radius of the distal surface is now p-2¢, and the mean
curvature negative. Therefore ]
2¢ 2¢
A=(1 = —)1 + —)
. p-2¢ p
4 5
=1 = ——155, ignoring (%)2, as required.

Data on shell thickness. From the photographs of section in

Figures 9(d) and 11(f) we estimate ¢ = iQQ . From this single piece of
datum we shall deduce several corollaries, including estimates of
diameter of notochord and somites in the next section. For the moment

we deduce

Therefore:

Corollary 2.8 The effect of the secondary wave is to reduce the

surface area by one third.

The secondary wave is the onset of the change in mean curvature,
and we have assumed that this effect comes on relatively sharply. The
effect must then last for several hours in order to enable the mesoderm
mantle to slide round the archenteron roof (see Figures 9(d), 10, 11).
In the case of the frog at 2006 we estimate that the effect must last
about 20 hours (see Figure 18 and §14 below). As the effect dies
away the mesoderm mantle gradually loses the energy to hold itself in
negative mean curvature, and will begin to try and reassert its original

positive mean curvature. This can be seen most clearly in Vogt's
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careful drawing in Figure 11(d). However the mesoderm mantle is
prevented from recovering its original curvature by the enclosing sack of
ectoderm. Therefore the entrapped mesoderm will begin to exert
counterpressures against the enclosing ectoderm, like a mild spring
pressing against the underside of the ectoderm. In fact the pressure is
visible from the outside, because the margin of the mesoderm mantle
pushes up a ripple in the ectoderm, that can be seen running across the

outer surface, and is called the gastrulation wave (see the film [117).

Another effect of the mild springlike action of the mesocderm mantle
is to cause it to tear’ away laterally from the endoderm, which by
contrast mowves passively where it is pushed and pulled by the mesoderm.

A third effect can sometimes be seen towards the end of gastrulation
as follows. When the mantle reaches the anterior end (Figure 11(d)
and (e)) the increased friction between it and the ectoderm may
momentarily interrupt the forward sliding of the mantle, even though at
the same time fresh mesoderm will continue to be pushed over the
blastopore lip by the expansion process; as a result the blastopore will
begin to protrude outwards, pear shaped, until the increased forward
pressure on the mantle overcomes the friction, and persuades it to
continue sliding forward once more. From the outside, this frictional
obstruction and release makes it look as though the gastrula is heaving
and gasping for breath (see the film [11]).

A fourth, and probably the most important effect of the pressure of
the mesoderm against the ectoderm is that it enables the mesoderm to
biochemically induce neural plate in the overlying ectoderm, wherever
they touch., Had there been no secondary wave of negative curvature,
then the mesoderm mantle, once inside, could not have had the same
contact with ectoderm, because, in an attempt to retain its positive mean
curvature, it would have had to arch itself away from the ectoderm,
leaving cavities, and therefore would not have been able to induce neural

plate.

* I am indebted to Klaus Janich for drawing my attention to the topology

of this process.
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12, NEURULATION,

Once the neural plate has been induced then neurulation begins., The
main feature of neurulation is the neural plate rolling itself up into the
neural tube (Figures 14, 15, 17), which eventually becomes the spinal chord
and brain. The rolling up is an active process, because isolated pieces of
neural tissue tend to curl up by themselves [1, Chapter 10]. It appears
that one of the consequences of induction is to make neural cells submerge,
thereby causing the mean curvature of the neural plate to change sign and
hence causing the rolling up.

Howewver that is not the only event happening during neurulation
because at the same time the underlying mesoderm mantle is forming itself
inte notochord and somites, and this is what we shall be primarily interested
in. The notochord is a long thin cylinder running from front to back just
beneath the neural tube (see Figures 14, 16, 26, 27). As it forms it
elongates itself and goes rigid, stretching the embryo lengthwise. It is
only a temporary organ, and later disintegrates and disappears. However
while it exists it plays an important role in providing structural support
for the formation of spinal chord and skeleton.,

The somites are small masses of mesodermal cells, each with a
small cavity inside, arranged in two rows on either side of the neural tube
and notochord (see Figures 16, 17, 27). They form sequentially from
front to back, until there are about 30 or 40 on either side, depending upon
the species. Initially they form fairly rapidly and then slow down towards
the tail (in frogs initially one pair every 40 minutes, slowing eventually to
2 or 3 a day). Like the notochord, the somites are temporary organs
because the cavities soon disappear, and different parts of the somites
develop into the vertebrae, muscles and the connective tissue layer of the
skin. However, although temporary, the somites do play an important
role in laying down the basic pattern, which the subsequent formation of
vertebrae, skeleton and spinal chord makes permanent,

Therefore both the notochord and the somites should perhaps be
regarded more as templates rather than organs, because as organs they
have no function and soon disappear, whereas as templates they create
and donate permanent pattern to the animal. The question arises how is
this pattern created ? We shall show that it is caused by the same

secondary wave that caused gastrulation.
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At first sight it might appear a little overambitious to attempt a
single explanation for such divers phenomena during both gastrulation and
neurulation and so let us put it more tentatively. In attempting to explain
gastrulation we were led to postulate Hypothesis 2 in the last section,
namely the existence of a secondary wave - and now this same hypothesis
leads us to expect further events in the mesoderm mantle that do seem
to occur with the correct timing and geometry during neurulation.

For consider what happens when the secondary wave hits the
proximal surface of the mesoderm mantle. It may take some time for the
secondary wave to cross the mantle, because when the primary wave
originally crossed it the shell was considerably thicker (see Figure 9(a)),
with thickness comparable to the distance of travel up the dorsal side.
Furthermore there is no reason to suppose that the speed of the primary
wave through the shell is necessarily exactly the same as its speed across
the surface. In the case of the frog we estimate that the time taken to
cross the shell is about 16 hours compared with 24 hours to travel up the
dorsal side (see §14 below). The secondary wave will follow with the
same timing. Therefore by the time the secondary wave hits the proximal
surface, its previous effect of reducing the area of the distal surface may
have mostly died away. Therefore the mescderm mantle will suddenly
experience a violent reversal of curvature for two reasons : firstly it will
be tending to recowver its original positive mean curvature as the effect on
the distal surface dies away, and secondly this positive curvature will be
drastically reinforced as the reduction effect now hits the proximal surface.
The mild spring will be suddenly transformed into a violent spring, and
the mesoderm will try to coil outwards underneath the neural plate.
However we shall show in Corollary 2.5 below that it is impossible for the
spring to achieve its desired curvature. As a result the central piece of
mesoderm will rip itself off, and roll up separately flexing itself straight
and forming the notochord. On either side individual segments will rip
off and curl up into somites, Meanwhile the remaining lateral mesocderm
remains unaffected by the secondary wave.

To justify these statements we shall first compute the relevant
curvature, and then examine the position to which the proximal surface
has been carried by gastrulation in order to explain why lateral mesoderm

is unaffected. Next we shall analyse the passage of the secondary wave
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across the proximal surface, in order to explain why the notochord forms
and elongates, and why the somites form sequentially from front to back.
Then in §18 we explain why the somites are segmented, how their size
regulates to the size of the embryo, and why the later somites are
smaller and slower to form. Finally in §14 we discuss details of timing.
First the curvature; let p denote the radius of the embryo.

Corollary 2.4, When the secondary wave hits the proximal surface

the mesoderm mantle will attempt to take up a positive mean curvature

equal that of a sphere of radius 2¢p/9, or a straight cylinder of radius

/9.

Proof. By the data on shell thickness in §11, the original excess

before gastrulation was e = % . By Corollary 3 the surface reduction
factor imposed by the secondary wave is ) = % . Therefore applying the
reduction factarto the proximal surface, the new excess is
s _8.7._ 7
278 4 °
Therefore by the lemma
e 3
D ===1 ==,
el X 2
By the data ¢ = % , and so

=2 9
“T8e T2
Therefore if the mesoderm were able to assume spherical form, of radius

p1, then

-2
]

=

:’1 =
Alternatively if the mesoderm were able to assume straight cylindrical

form, of radius r, then the other principal radius of curvature would be @,

and so
; s | 1 1
=-(—+ D) =— .
M 2 (r‘ oo) 2r
Therefore
1 p 4
=5p = gras required.

Corollary 2.5, The mesoderm mantle is unable to achieve the

required positive mean curvature without tearing itself,

Proof. Suppose, on the contrary, that it does achieve required mean
curvature without tearing itself; then we shall prove a contradiction. When
the neural plate begins to roll up, it has negative gaussian curvature (see

Figures 13(B') and 17 (Stage 18)), similar to the dorsal lip (§11 Corollary
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2.,1). Howewver this time the situation in the underlying mesoderm mantle
is aggravated on the one hand by the fact that it is trying to achieve an
even greater positive mean curvature, and on the other hand by the
neural plate getting in the way preventing it from curving so much, More
precisely, let n denote the radius of the transverse section, and r the
radius of the median section, at a point on the dorsal side of the distal
surface of mesoderm, as illustrated in the sketch of the transverse

section in Figure 22,

Figure 22, Diagram of transverse section of neurula,

neural plate proximal surfaces

distal surfaces
epidermie

notochordal
and somitic

mesoderm Isteral

mesoderm

Let ¢ denote the thickness of mesoderm, as before. Initially the over-
lying neural plate will have approximately the same thickness (see the
photograph in Figure 11f), but as it rolls up it becomes thicker.
Therefore n z 2¢. The principal radii of curvature are n, -r (negative

because r points out of the mesocderm), and so the mean curvature is

5 [V o U
But the required y = B’ by the proof of Corollary 4.
Therefore
1 3 1 3
—_—=— — Pty |
n"4c r®3c”
therefore
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But this contradicts n 3 2¢, and therefore completes the proof of
Corollary 2.5,

A conseguence of Corollary 2.5 is that when the curvature or sheer
forces in the mesoderm become greater than the cohesive forces between
neighbouring cells, then the mesoderm mantle will tear itself. In order
to explain where the tears will occur, and in what order the torn pieces
will curl up, we shall need to examine the way in which the secondary
wave travels over the proximal surface. But before we do this, we make
a couple of remarks about the wvalidity of Corollary 2.4 .

Remark 1, When the notochordal-mesoderm tears free and rolls itself
up to form the cylindrical notochord, we might expect its diameter to be
Jé that of the embryo, from Corollary 2.4, In fact this is sometimes
quite a good estimate (see Figure 28). When the somites form, although
they are not exactly spherical in shape, their cross-section is roughly
twice that of the notochord, which again is in agreement with Corollary 2.4,

Remark 2. In using the value ) = % in the proof of Corcllaries 2.4
and 2.5 we have implicitly made the rather drastic assumption that cells
on the proximal surface submerge in the same way as those on the distal
surface, or, more precisely, we have assumed that the effect on the
curvature is the same. In fact they may submerge quite differently.
However we are justified in using the term submerging, because Mookerjie,
Deuchar and Waddington [21,p.451] have shown that the area of contact
between cells does increase considerably when the notochord forms. Our
implicit assumption is that this local effect imposes the positive mean
curvature, which not only forces the cylinder to have small radius, but also
to be straight (because if r < « in Corollary 2.5, this reduces the mean
curvature), Therefore it is the secondary wave of submerging cells that
initially forces the notochord to be stiff. Later when the secondary
effect wears off the notochord retains its stiffness by the cells wvacuolating
(that is swelling with fluid) making the whole cylinder turgid, and by the
secretion of a thin supporting sheath [21,pp. 262, 4507.

The proximal surface, P. Recall that in §10 above we defined the two

circles a and & on the distal surface of the blastula to be the
presumptive meso/endoderm and ecto/mesoderm frontiers, respectively.
Let X denote the solid piece of blastula bounded by the planes through

a and 5. Then X is shaped like a lop-sided barrel, as shown in
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Figure 23(X). The surface of X comprises 5 regions as follows :

(i) The annulus at the top bounded by circles 5, &%, to which
presumptive ectoderm is attached (shown cross-shaded).

(ii) The disk at the bottom bounded by circle g, to which the
rest of the presumptive endoderm is attached (shown shaded).

(iii) The inside yolky surface is a disk bounded by the circle g*,
which we have drawn flat for convenience, but which in fact

is usually curved (see Figures 9, 12).

(iv) The distal surface is the outer curved annulus bounded by

a and &, and containing the points ABCD on the dorsal side.
(v) The proximal surface P, which we define to be the inner

curved annulus bounded by 8* and §*, containing the points

B*C*D* on the dorsal side. MNotice that we do not include

the yolky surface (iii) in the definition of proximal surface.

The presumptive meso/endoderm frontier lies in the interior of X, and

is approximately the conical annulus bounded by o and g* (shown dotted);
this frontier is already predetermined by the boundary of the yolky region
of the egg before cleavage. Therefore the sides of the barrel form the
presumptive mesoderm, and the floor of the barrel, which is yolky, forms
part of the presumptive endoderm, the rest of which is attached to the
bottom disk.

Gastrulation turns the barrel inside out, into the bottle-shape Y
shown in Figure 23(¥). For diagrammatic simplicity we have not shown
all the details of the endoderm part of Y, for instance where it has been
torn away from the mesoderm (along the laterial parts of the dotted
annulus), but the shape of the mesocderm in Y is sufficiently accurate for
our purpose., Let Q denote the new position of the proximal surface after
gastrulation, now lying on the outer surface of Y between the circles B*
and 8%, and containing the points B*C*D*. The main point we wish to
ermphasise is that whereas the distal surface ABCD, between g and &, now
stretches round nearly the whole embryo, the proximal surface Q only
stretches over less than half as much., It is the proximal surface that
induces neural plate (and not the yolky surface because that is endoderm),
and therefore the position of the former determines the latter (see
Figure 12). This explains the pear-like shape of the neural plate (see

Figures 14, 17, 18, 23). This also answers a question of Waddington
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Figure 23. Mesoderm mantle before (X) and after (Y) gastrulation.
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[21, p. 467) as to why the neural plate is broad at the front and narrow
at the back (which previously seemed to be a paradox on the assumption
of an evocator diffusing only from the dorsal mid-line).

The secondary wave—front on Q. Figure 24 sketches the successive

wave—fronts as the secondary wave travels across the proximal surface Q,
looking down on @ from the dorsal side. Quantitively we should expect
this picture to differ slightly for different species, but to justify the
picture qualitatively let us work from Vogt's detailed fate maps for newts
in Figure 13, as follows.

Consider first the passage of the primary wave, which travels
through only the presumptive mesoderm, that is the sides of the barrel X.
The primary wave starts at A, by Hypothesis 1, and travels up the distal
surface to the circle 5; at the same time it penetrates through the shell,
first hitting the proximal surface P at B*, and then travelling up P to 5.
Let F be the family of curves on P representing the primary wave-fronts,
in other words the successive positions of the primary wave.

Now turn to the fate maps of Figure 13. Admittedly these are
drawn on the distal surface showing mesoderm as the annulus between
o and 5 , but by projecting radially from the centre of the embryo, we
can identify P with the subannulus consisting of presumptive notochord,
prechordal plate, somites and tail mesoderm. P does not contain the
complementary subannulus consisting of lateral and pharyngal mesoderm,

Since the primary wave starts at A, it is reasonable to assume that,
near A at any rate, F is approximately the family of semicircles concentric
with A. Now the boundaries between presumptive somites are also
circular arcs concentric with A, and as we shall explain in the next
section this is no accident. But for the moment let us postpone the
question of why, when the somites form, they segment themselves along
secondary wave-fronts, and merely assume at this stage that the
presumptive somite boundaries lie along primary wave-fronts.

Let Fr1 denote the wave—front separating somites n and n+ 1. The
complete wave-front Fn is a semi-circle, whereas the somite boundaries
consist of two arcs, one on either side, and so in order to draw Fn we
must join the latter by an arc running through the presumptive notochord,
which we have indicated by a dotted line in Figure 13. These dotted lines

do not appear in Vogt's original fate map because as opposed to what
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happens in the somites, the secondary wave-fronts do not manifest
themselves physically in the formation of notochord, for reasons which we
explain in the next section. Therefore the notochord when it forms
appears as homogeneous and unsegmented.

Now consider the effect of gastrulation upon the wave-fronts.,
Gastrulation turns the barrel X inside out into Y, and induces a
diffeomorphism

h:P - Q.
The family {Fn} of primary wave-fronts in P is mapped by h onto the
family of secondary wave-fronts in Q.

Lemma 3. The secondary wave-fronts are as shown in Figure 24,

Proof. We examine the diffeomorphism h. Metrically the most
striking feature of h is that it shrinks the large circle 5% into the small
blastopore. At the same time h expands areas uniformly by the
expansion process (1) of §10 above (mathematically h has constant
Jacobean), Therefore since h shrinks the neighbourhood of &*
longitudinally it must compensate by expanding latitudinally. Therefore
the presumptive notochord in P is mapped by h into an elongated roughly
rectangular strip on the dorsal side of Q, shown by dotted lines in
Figure 24, Meanwhile we know from experimental observation (see
Figures 16, 27) that the boundaries between somites are mapped onto
lateral lines in @, which are shown in Figure 24 with the same numbering
as in Figure 13. There remains to justify the extension of the wave-
fronts into the notochord region in Q.

Since F_is near to g* in P, the same is true for F, in Q. Since
F touches s* at O*in P, the same is true for Fy in Q. The region

t
between F'n and F‘n in P consists of the N somite and a region of

1
notochord, which let us call Nn' An examination of Figure 13 shows that

the areas of N1 ,...,N_ are approximately proportional to the numbers

5
1,...,5. Therefore the same is true for their images in Q because h

expands uniformly. The only way to extend the curves F1 PP ,F4 so as

to divide the rectangular strip of notochord in @ in these proportions is

as shown in Figure 24. Finally F_.,...,F,_ all touch §* at D, and so

10
the same is true of their images. This completes the proof of

Lemma 3.
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We can now follow the progress of the secondary wave across the
proximal surface and describe its effects.

Lateral mesoderm. First notice that the secondary wave is confined

to the proximal surface, because primary wave never crossed the yolky
surface, since that was part of the endoderm (see Figure 23). This
explains why the thin tongues of lateral and pharyngal mesoderm remain
relatively passive during neurulation.

Prechordal plate. The secondary wave first hits the proximal

surface at its most anterior point B*. Therefore the first piece of
mesoderm to be effected is the prechordal plate, lying between B* and F
(see Figure 24). This may be the reason why the anterior neural fold is
the first appearance of neurulation (see Figures 11f, 12, 17). Admittedly
the neural folds seem to be the initial phase of the neural plate rolling
itself up, but Waddington [21,p.4767] remarks that it is surprising that
the most anterior part of the neural plate should be the last to be
induced and yet the first to curl up. We suggest that the prechordal
plate may be giving a helping hand underneath. For the mesoderm at
this stage certainly maintains close contact with the neural plate (see
Figure 11f); and active positive curvature by the underlying mesoderm
would have the physical effect of reducing horizontal tension between
overlying neural plate cells, providing them with the opportunity of gently
increasing mutual contact without the danger of being pulled apart again,
and therebye facilitating their columnar formation.

Supporting evidence that the prechordal plate is itself actively
curling up is that it begins to tear itself away from the more anterior
parts, the pharyngal mesoderm, the tear occuring along B*. This tear
enables it to achieve both positive gaussian and positive mean curvature,
and to surround the fore-brain region (see Figures 14, 16). Therefore
it is not subjected to the same severe stresses as the more posterior
parts of the mantle, which are prevented by negative gaussian curvature
from achieving the desired positive mean curvature without further
tearing. Consequently the prechordal plate is the only piece of proximal

surface able to retain its integrity as a sheath surrounding the neural

tube.,
Neural folds. We suggest that as the secondary wave proceeds
through the successive wave-fronts F_,F_,F, it causes the neural folds

T gkttt
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to spread from the front round to the sides (see Figure 17 Stage 16). It
takes much longer for the folds to reach the back; in fact Sedra and
Michael [16] remark upon the fading of the neural folds towards the
blastopore at late stages of neurulation.

One can ask the question (c.f. [21, p..4177): if the secondary wave
is also spreading over the interior of the proximal surface (Figure 24),
why does the curvature only appear at the edges of the neural plate and
not in the middle? An answer is suggested by imagining unrolling a roll
of stiff paper and trying to hold it flat: the paper refuses to go flat and
retains most of its curvature at the ends, where the bending moment is
least, So the enclosing sack of ectoderm may be pressing down
pssively on the mesoderm mantle at this stage, allowing it only to curl
up at the edges (see Figures 14A"),15, 17 Stage 17). When the reural
plate itself becomes active shortly afterwards, its curvature tends to be
the same both in the middle and the edges (see Figures 9(e), 14(B"), 15,
17 Stage 18).

As supporting evidence for this point of view notice Shumway's
remarks [17,11], that photographs of sections at this stage show the
neural folds flatter than they appear in living specimens, and show the
neural furrow shallower, This can be explained as follows : the force
pushing up the neural folds is due to the energy released by the
submerging mesoderm cells, and when these cells are killed during
preparation of slides, this force disappears allowing the elastic resistance
of the owverlying neural plate to push the folds down again,

Neural furrow. As can be seen from Figure 24 the secondary wave
travels much faster over the notochord region than along the somite

region. By the time the wave-front F_ is reached nearly the whole of the

former has been covered. One of the 5fir-st results is that the mesoderm
tries to form a tight fold along the dorsal mid-line, similar to the dorsal
lip (§11 Corollary 2.1), only more so because of the greater positive
mean curvature. In so doing it pinches together the overlying neural
plate to form the neural furrow (see Figures 14, 15). This is probably
the main reason for the neural furrow, because without mesoderm
underneath the furrow tends not to appear [23, p.305], and conseguently

the neural tube tends to develop with a round cross-section rather than

elliptical. Supporting evidence that the mesoderm causes the neural
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furrow comes from time-lapse films*, in some of which the anterior end
of the furrow can be seen to disappear with a flip, just at the moment
when mesoderm underneath would be freeing itself from the neural plate
in order to roll up into notochord,

Notochord. We suggest that by the time the segondary wave has
reached the curve-front F5 the mesoderm has begun to tear itself along
the dotted lines in Figure 24. What causes the tearing we shall
discuss in a moment. But once the tears have bteen made the mesoderm
between the dotted lines is free to roll itself up into a cylinder to form
the notochord (see Figures 14, 16, 26, 27), or, more precisely, the
cells in that region are free to submerge further by increasing mutual
contact [21, p.451], and thereby form the cylinder. The same increase
of cell contact causes the cylinder to flex itself straight, which in turn
causes it to also tear itself away from the prechordal plate along F—'D,
leaving the notochord attached to the rest of the mesoderm only at the
blastopore end.

But what causes the tear along the dotted lines? One can avoid the
guestion by merely saying that this region of mesoderm 'differentiates
into notochord" - but having taken the point of wview that notochord and
somites are primarily templates rather than organs, we are obliged to
look for some more mechanical reason for the tearing and the formation
of pattern. We tentatively suggest the the dotted lines may be the locus
of maximal bending moment, maximal sheering forces, and maximal
weakness of the mesoderm mantle, as follows.

Firstly the bending moment. Figure 25 is a photograph of a
transverse section at this stage, showing the notochordal cells submerging
away from the proximal surface, inducing positive curvature and bending
moment stress in the mesoderm mantle. Meanwhile the increased
mutual contact between notochordal cells increases their cohesive strength,
and makes the wave-front itself the momentary line of meximal weakness.
... coincide

6
along the posterior end of the notochord boundary, stabilising the line of

But from Figure 24 it can be seen that the wave-fronts FB’F

weakness, possibly sufficiently long for tearing to occur,

* I am indebted to Jack Cohen for showing me his films on axolotl
neurulation.
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Figure 25. Transverse section of newt neurula showing notocherd
forming. From Vogt o, p.544].
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Figure 26. Transverse section of frog embryo showing notochord.
By this stage the somites have developed into dermatome,
sclerotome and myotome. From Balinsky [1, p.316].

Figure 27. Diagram of cell arrangement in the mesoderm of the newt

neurula, showing the developing notochord and somites.
From Waddington [21, p.449].
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Secondly the sheering forces, The rapid spread of the secondary
wave over the posterior end of the notochord region and the consequent
submerging will cause the latter to push forward on its anterior part,
setting up longitudinal sheering forces. Meanwhile somites 1,...,5 will
already have segmented, as we explain in the next section, in other words
will have torn away from each other laterally along the lines !Z'O,E:"1 Fetia ,F5
up to the dotted lines in Figure 24. Therefore each of the first five
somites on either side will be attached to the notochord region only along
a fragment of the dotted line., This fragment will be subjected to both
lateral bending moment and longitudinal sheering force, and, if tearing is
to occur, will be the most llkely place for the somite to tear away from
the notochord.

Admittedly we have suggested rather complicated reasons for tearing,
but our description of the forces present appears to coincide with
experimental observation. The tearing caused by such forces might be
somewhat ragged initially, but then the submerging effect would be an
automatic self-correcting device for subsequently rounding up the notochord

cylinder and each individual somite (see Figures 16, 27).

13. PATTERN FORMATION,

Jonathan Cooke [3,4] has shown experimentally, by surgery, that the
somites are determined before gastrulation begins, at just about the same
time that our hidden primary wave is beginning to travel up the presumptive
mesoderm in the blastula shell. Coupling this with the fact that the
presumptive somite boundaries coincide geometrically with the semi-circular
primary wave-fronts in Figure 13, it is almost irresistible to conclude that
the primary wave is connected with the determination of the somite pattern.
Stimulated by Jonathan Coocke, we introduce a new theoretical idea in this
section to show how such pattern could be formed. The idea is to
combine the primary wave with a clock., There are several ways of
combining primary waves with clocks to form regular repeating patterns,
and we select one method that seems to give the simplest and most
appropriate model for this context.

Suppose that during the passage of the primary wave there is a
periodic fluctuation in the levels of concentration of certain chemicals in

the cell. Normally the homeostasis and the slow development of
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Figure 28. (a) Chemical fluctuations impose a ripple on the primary wave.
(b) Fluctuations become dominant.
(e) Continuous deformation from (a) to (b) along parameter ©.
(d) Segmentation of somites.
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a cell might hardly be affected by such fluctuations, but at the moment
that homeostatic stability breaks down and the state of the cell suffers a
catastrophic jump (as described in the proof of the theorem in §8 and
illustrated in Figures 4(b) and 5), then the cell might be exceptionally
susceptible to even small fluctuations. For instance fluctuations could
affect theshold, and hence the timing of the jump. More precisely, for
any given time t, the state of the fluctuation at that moment will cause
the corresponding section of the surface M in Figure 5 to be displaced in
the s-direction. As time progresses the section will be displaced to and
fro synchronous with the clock. Therefore the clock will impose a
ripple on the fold curve of M, and hence upon its projection W in
space-time. In other words the clock will impose a ripple upon the
track W of the primary wave in space-time, as illustrated in Figure 28.

If the fluctuation becomes dominant, then it will cause the
amplitude of the ripple to increase until W is no longer monotonic, as
illustrated in Figure 28b. In this case W will no longer represent a
continuous wave, because only parts of it will manifest themselves, as is
shown by the following lemma.

Lemma 4. If the flutuation is dominant the the frontier alternately

moves in spurts and pauses.

Proof. Using the notation of Figure 28b, during the interwval

to <t < tT the arc COCT represents the frontier moving as a wave from

So to s, and slowing parabolically to a halt at 51 §

the line c1c2 represents the frontier pausing at Sy

the arc C‘ECS represents the frontier moving from 31

This follows from tracing the development path of each cell on the

Duri
uring tT <t < t:2
Duri

uring t2 <t < t3
to Sy and so on.

surface M lying above space-time, as in Figure 4b.

Remark., MNotice that the peaks €4sC of the ripple manifest themselves,

whereas the troughs do not. This is3 because, near a trough, a cell will
already have catastrophically jumped into its new equilibrium state (onto
the lower surface of Figures 4a, 5), and so is never able to attain the
old stable states represented by the interior of the trough. We therefore
say the troughs are silent.

Segmentation of somites. Lermma 4 gives the key to understanding

why the somites segment. The primary wave alternately moves in spurts

and pauses at the wave-fronts Fo’F1 ,F

PEREE in Figure 13, Therefore
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the secondary wave will do the same in Figure 24, Therefore during the

spurts from Fn to Fn all the cells in the nth somite on each side will

1
submerge almost simultaneously, and during the subseguent pause the
submerging cells will have time to tear themselves away as a mass from
the as yet unaffected region, along Fn. The tear is facilitated by the
longitudinal tension set up by the elongating notochord. Once the mass
has torn free, the continuing submerging of the cells causes the mass to
round up into the somite (see Figures 16, 27).

Having presented the main idea of the model of segmentation we now
go on to explain the geometry of the segmentation arcs, and why they
end where they do. For as we suggested at the end of the last section,
this in turn will determine the line of tear of the somites away from the
notochord, and hence determine the boundary of the notochord. Next we
shall explain what causes the fluctuations, and the timing of the clock,
and finally how the size of the somites is regulated to the size of the
embryo. But first we must go back to the theory for a moment.

Segmentation of arcs. Let § be a parameter representing increasing

dominance of the fluctuation over the primary wave, in other words
increasing amplitude of the ripple. Figure 28c shows § drawn as a
third dimension, wvarying smoothly from § = Bo, where the fluctuation is
subservient as in Figure 28a, to 8 = 62, where the fluctuation is

dominant as in Figure 28b. The critical value 8§ = § shown by the

1 3
dotted line is where dominance first appears, in other words where the
graph first becomes non-monotonic.

Now suppose that § is realised as a second space-dimension
perpendicular to s. Then in Figure 28c the (s,f8)-plane nearest the eye
represents 2-dimensional space, and the cube represents 3-dimensional
space-time. The surface W represents the path of the primary wave in
space-time. Generically the projection of W onto the space-plane will

have fold curves XY Zgs X which project onto the* cusps S UVys

2¥2%2
s, U,V The cusp points u

i 8 =08 P
sYsVye occur at the critical value

1*Ya 1

FMathematically the cusps here are pheonomenologically different from the
cusp catastrophe shown in Figures 4a,5. The latter arose solely from
the dynamic, whereas the cusps here arise from interaction between the
time-axis and the dynamic. More precisely they are second order
tangencies of time-axis with the fold surface, a 1-higher-dimensional
analogue of the point c_. in Figure 5, which was a first order tangency

of the time-axis to the fold curve.
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Lemma 5. The primary wave pauses along the arcs S,uys, 52u2.
Therefore these become the segmentation arcs of the secondary wave.

Proof. From Figure 28b we saw that pauses began at the peaks

€5y of the ripple. Therefore in Figure 28c pauses begin along the

fold curwves XYy Xp¥pe The projections of these curves onto the space-

plane are the arcs 51u1 " 52'..:2, which are therefore the segmentation arcs,

as required.

Notice that the fold curves Y42y YpZ, represent troughs, which are

silent, and therefore their projections UyVys UpVy do not manifest

themselves in space. That is why we have drawn therm as dashed lines
in Figure 28c. Note also that each segmentation does not happen
simultaneously, as shown by the following corollary .

Corollary 5.1. Segmentation starts at S, and proceeds towards u

"
in the direction of § decreasing. Then

along the segmentation arc SqY,

along s Uss and so on.

2

Proof. The projection of the fold curve x Yys into the time axis is

1
in the direction of time increasing.

Geometry of the somites. The above arguments work just as well

if (s,8) are taken as polar coordinates rather than cartesian coordinates,
and Figure 28d is the diagram for polar coordinates analogous to
Figure 28c for cartesian. The critical value ]al = 5‘1 is shown by the

dotted lines, dividing the region [8] < 6, , where the fluctuation is

12
subservient, from the region 81 < |8| < 52 where it is dominant. The
wave fronts are approximately the circles r-constant, and the
segmentation arcs are subarcs given by 51 < 19[ < 82. Comparing with
Vogt's fate map in Figure 13 we have a reasonably good qualitative
explanation for the geometrical shape of the segmentation arcs between
successive somites.

Moreover Corollary 5.1 explains why each segmentation begins at the
boundary B"' of the proximal surface and proceeds inwards towards the
notochord. Figure 16 illustrates clearly the geometry of the somite
mesoderm first torn away along g8* curling up round the neural tube, and
then the segmentation proceeding successively from front to back, with
each segmentation proceeding inwards towards the notochord. In the

case of frogs and toads there is an additional detail that each somite
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rotates through 90° as it forms [3], and this may be explained by the
inward process of Corollary 5.1 coupled with the forces exerted by the

submerging cells.

Boundary of the notochord. What determines the limits 81,82 of the
segmentation arcs in Figures 13 and 28d ? The limit 82 is easy to
understand because this is determined by the boundary B of the proximal
surface (see §{12). But 81 is more subtle, and is inter‘e‘sting because in
turn it determines the subsequent boundary between somites and notochord.
It is well known that before cleavage the gradients in the egg are
dominated by the animal-vegetal axis, for instance the pigment is
concentrated towards the animal pole and the yolk towards the vegetal
pole. Therefore is not unreasonable to assume that when the primary
wave travels in a direction having 8 sufficiently small, the animal-vegetal
gradient will dominate the fluctuation. Conversely if the egg is relatively
homogeneous longitudinally it is not unreasonable to suppose that the
fluctuation might dominate when £ is sufficiently near‘g . These two
assumptions imply the existence of a critical angle 51 between, which in
Vogt's fate map in Figure 13 appears to be initially about 300. As the
primary wave proceeds north and begins to slow down before stabilising
the effect of the fluctuation may decrease, and so it is not unreasonable
to suppose that ‘31 should be an increasing function of s, Therefore we
have an explanation of the halberd-shaped region of presumptive notochord
in the blastula.

Fluctuations. What is the most likely cause of fluctuations in the
levels of chemical concentrations in a cell ? One obvious answer is
cell-division. Indeed Paul Weiss [23, p.77] points out that mitosis is a
kind of earthquake for a cell, which monopolises its resources, and
during which development is temporarily suspended. He cbserves [23, p.85]
that cellular differentiation and multiplication are two processes which, if
not strictly mutually exclusive, are nevertheless markedly antagonistic in
their tendencies, Therefore it is not unreasonable to suppose that it is
the regular cleavage in the blastula that produces the fluctuations that
cause the ripple during the primary wave, and therefore subsequently
the segmentation during the secondary wave.

This hypothesis looks plausible from the point of view of timing, for,

from Figure 18, we observe that the cleavage in the blastula occurs at
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intervals of slightly less than an hour in frogs, and according to Cooke [3]
this slows down to one every 2 or 3 hours shortly after gastrulation has
started. If the time delay to the secondary wawve is constant, then we
should expect a similar timing in the formation of the somites. And sure
enough the early somites form one about every 40 minutes [3], slowing

to one every 2 or 3 hours in early tail-bud. In the late tail-bud the final
somites slow to 2 or 3 per day, but this effect may be enhanced by an
increase in the delay between the primary and secondary waves in the

final wventral region.

Note that the above figures may be unreliable in that they refer to
different experiments, possibly at different temperatures, but are in
sufficient agreement to warrant a careful experimental correlation of the
timing of cleavage before and during gastrulation, with the formation of
somites during and after neurulation.

Regulation. There are nearly always the same number of somites in
individuals of the same species. Therefore the size of each somite must
regulate to the size of the embryo. But how does an individual cell know
whether it belongs to a big embryo or a little embryo, in order to
cooperate with the correct number of neighbours to form a big somite or
a little somite? To explain this we need to make an additional assumption,
that cells at the beginning and end of the wave have predetermined
development., Then :

Lemma 6. The length of each somite is proportional to the length

of the embryo.

Proof. Let L be the length of the embryo. The length of travel of
the primary wave is proportional to L, but the time taken to travel that
length is independent of L, since the development of the end points is
predetermined. Therefore the average speed of the wave is proportional
to L. But the periodicity of mitosis is independent of L. Therefore the
distance travelled by the wave between two mitoses is proportional to L.
In other words the length of each somite is proportional to L.

Remark. The above proof appears to be similar to the usual
argument for regulation in a standard gradient model for pattern
formation, which runs as follows : a longer embryo has a shallower
gradient and hence longer somites. However Cooke [3,4] points out that

the latter argument gives the wrong answer where comparing somites at
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the front and back, whereas our model can give the right answer. For
near the end of the wave the gradients become shallower, and therefore

in the standard gradient model one would expect the somites to become
longer, whereas in fact they become shorter., By contrast in our model
the shallower gradients are associated with the wave slowing down
parabolically (see §9), and so the distance travelled by the primary wave
between mitoses decreases causing the somites to becorme shorter, It
would be interesting if it was possible to measure experimentally the
parabolic slowing of the primary wave and the decrease in rate of mitosis,
for this would then provide a quantitative prediction for the decrease in
size of somites. Another way to test the model is to devise a method for
altering the speed of either mitosis or the primary wawve, without altering

the other, because this would then alter the size and number of somites.

14. TIMING OF GASTRULATION AND NEURULATION.

Our whole theory rests upon the existence of a hidden primary wave.
As yet there has been little experimental attention directed towards
confirming this wave because the very concept of this type of wave first
needed the deep mathematics of catastrophe theory. With this mathematics,
our theorem predicts the existence of the primary wave, based only upon
the fact that mesoderm differentates from ectoderm.

Our Hypothesis 1 of §10 that the wave begins at A (See Figures 12,13
and 23) is based on experimental results of Nieuwkoop [127], that in
axolotl there is a hidden wave of mesoderm determination trawvelling up the
dorsal side from A to D. This can be detected by the grafting experiment
of §7 : if the primary wave has already passed the donor point of the
graft, then, by transplanting the graft to the ventral side, the graft will
induce a subsidiary invagination after the appropriate delay, as in the
classical Spemann-Mangolde experiment [1, Chapter 107. According to
MNieuwkoop the primary wawve in axolotl begins at A soon after 7th cleavage,

and measured in hours after fertilisation has the following timing.

Hour Delay
Primary wave begins at A (7th cleavage) 16 '} 20
Secondary wave begins at A (dorsal lip) 36
Primary wave reaches D 36 } 50
Secondary wave reaches D (blastopore closes) 56
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The fact that the delay at A is the same as the delay at D makes
Hypothesis 2 plausible, that the secondary wave does indeed follow the
primary wave after a 20 hour delay. (The fact that the seondary wave
begins at A at the same time as the primary wave reaches D may be
accidental because these points are spacially far apart, and may not occur
in other species.)

In different species and at different temperature we should expect
different timing. For instance from the normal tables for frogs and toads
([13,16,17] and Figure 18) we deduce the following feagures. In each
case we have assumed that the hidden primary wave begins at A after 7th
cleavage (Stage 7-7%) and reaches D by mid-gastrulation (Stage 11),
although of course these assumptions needed to be checked experimentally,
as in the axolotl case. Meanwhile the visible secondary wave begins with
the dorsal lip (Stage 10) and reaches D with the blastopore closing (Stage
13).

SrETaE [1.?.] Rana| [13] Rana [1e] Bu‘fo
pipiens sylvatica regularis
Temperature 18% 18°% | 15.4% | 10.4%| 25°%
Primary wave begins at A 10 6 a7 *11 3.5
Secondary wave begins at A 26 19 24 45 7
Primary wave reaches D 34 24 3z [=19] 10
Secondary wave reaches D 50 36 52 986 14.5
Delay 16 12/13 | 19.3/20 | 34/36 | 3.5/4.5

* Note that the figures for the two lower temperatures
for Rana sylvatica are measured in hours after the first
cleavage, as opposed to the others which are measured

from fertilisation.

In each case the delay at A equals the delay at D, well within the
tolerance of experimental measurement. These figures suggest that

Hypothesis 2 remains plausible under wide wvariations, and would appear to
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justify further experimental work to confirm the existence and timing of
the primary wave.

We now turn out attention to neurulation and examine in detail the
timing for one species namely Shumway's normal table [17] for the frog
Rana pipiens, shown in Figure 18, Assuming that the primary wave takes
% as long to cross the blastula shell as to travel up the dorsal side from
A to D, we show that Hypothesis 2 continues to be plausible throughout
neurulation as well as gastrulation, from the point of view of timing. In
order to be precise let us recap, for the frog, all the assumptions that
we have made so far about timing. The letters A, B,etc., refer to the
points in Figures 12, 13 and 23.

(i} The primary wave begins at A after 7th cleavage, 10

hours after fertilisation.

(ii) The primary wave takes 8, 16, 24 hours to reach

peints B,C,D, respectively, on the distal surface.

(iii) The primary wave takes 16 hours to cross the shell

to the proximal surface,

(iv) The secondary wave is delayed 16 hours after the

primary.

We can now compute the time in hours after fertilisation when the
secondary wave hits each of the different points :

Point A B c D B* c* o*

Hour 26 34 42 50 ' 50 58 66 .

In order to compute the changes in area of the distal and proximal
surfaces we need two more assumptions :

(v) The effect of the secondary wave is to reduce the

surface area by one third (by §11 Corollary 3), and this

effect dies away linearly over 20 hours,

(vi) The expansion process of the blastula shell (see

§10 abowve) starts at hour 20, and lasts for 30 hours, by

which time it has doubled the area.

Note that these six assumptions are guesses based on three peices of data:
firstly the timing of the normal table of Figure 18, which Shumway
observes can vary up to 10% in individuals$ secondly the data on shell
thickness at the end of gastrulation, = = p/12, from Figures 9(d) and 11(f);

and thirdly the estimate AB = }$AD from Figure 12, which refers to newts
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and toads rather than frogs. Therefore our assumptions must be tentative.
Howewver we are not claiming quantitative accuracy at this stage, but only
wverifying guantitative plausibility of the theory.

Using the six assumptions we can now plot against time, in Figure
29, the expansion and contraction at different points of the distal and
proximal surfaces of mesoderm mantle, relative to the initial distal
area before gastrulation. The curves are drawn for the point A, and the
three pairs of points (B,B*), (C,C*) and (D,D*). The continuous curves
represent points A,B,C,D on the distal surface, and the dotted curves
points B*,C* ,D* on the proximal surface., In the case of A there is no
corresponding point A* because the proximal surface-does not extend that
far down (see Figures 12 and 23). In the other three cases we can
deduce the excess e and hence the mean curvature y frem Lemma 2.

Since the thickness of the shell after gastrulation is ¢ =% , and
since it was twice as thick before the expansion process, it must initially
have been g = % at the beginning of gastrulation., Therefore by the lemma
the excess was initially e = —g- . Therefore since we are comparing areas
with the initial distal area, all the distal curves must start at 1 while the
proximal curwves start at % . (In Figure 29 the scale on the vertical axis
indicated refers only to the bottom pair D,D*.)

During the expansion process the distal area doubles, and so the
distal curves increase to 2. Meanwhile the thickness halves to ¢ =% s
reducing the excess to e = -% , and so the proximal curves increase to
2 x g = 1?2 . Therefore if there were no secondary wave each pair of
curves would be approximately parallel, implying constant positive mean
curvature, 3 = ; .

Howewver when the secondary wave hits the distal surface, shown by
minus signs in Figure 28, the distal curve suddenly reduces by g, causing
the pair of curves to cross over, and so the mean curvature goes negative,
forming (after the initial invagination) the archenteron roof during
gastrulation., When the secondary wave hits the proximal surface, shown
by plus signs, it is the turn of the proximal curve to suddenly reduce by
3 causing the pair of curves to recross and diverge, and so the mean
curvature goes positive, causing the formation of the anterior neural
folds, the notochord and early somites. Figure 29 confirms that this takes
place mainly during neurulation, between the hours 55 and 70, in

agreement with the normal table of Figure 18, Therefore our theory of
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Figure 29. Timing of secondary effect (for Rana Pipiens at 1800)

A _endoderm

B prechordal

C mid-notochord

2
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Hours after fertilisation.

neurulation is plausible from the point of wview of timing.

After the primary wave has reached D* it continues to spread
round to the ventral side, Therefore the secondary wave, after
neurulation, continues to spread wventrally over the proximal surface to

form the later somites, eventually extending into the tail bud stages.
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15, EXPERIMENTS TO BE DONE,

Summarising, we have given a unified explanation of both the
morphogenesis of gastrulation and the morphogenesis of mesoderm during
neurdlation, assuming only :

the shape of the blastula,

the expansion of the shell,

the differentiation between ectoderm and mesoderm,

that differentiation begins at the grey crescent and

that there is a secondary wave of cells submerging.
The theory admits many testable predictions about timing, and some of
the experiments that could be done are as follows :

(i) Verify the passage and timing of the primary wave in different
species at different temperatures by graft experiments.

(ii) Find the time that the primary wave takes to cross the blastula
shell by splitting the shell and grafting slices of distal and proximal
surfaces separately.

(iii) Measure the timing of the secondary waves of curvature change
more precisely than the existing normal tables,

(iv) Simulate the morphogenetical movements of gastrulation on a
computer, by using Poisson's equation for the expansion process, and the
secondary wave of curvature change.

(v) WVerify that the archenteron roof, notochord and somites are
caused by the same type of cellular phenomenon, by grafting distal and
proximal slices onto the surface of endoderm and timing the submerging
effect,

(vi) Verify the energy release during the secondary effect by
microcalorimetric measurements of heat loss, and by oxygen consumption,
in distal cells during gastrulation and proximal cells during neurulation.

(vil) Measure how long the secondary effect lasts, and the speeds
of onset and dying away. Compare this with the length of time that the
archenteron roof retains its negative mean curvature, the time that a
somite preserves its shape, and the time before the rotochord cells
wvacuolate,

(viii) Measure and compare the forces exerted by mesoderm
(prechordal plate) and ectoderm (neural plate) in pushing up the anterior

neural folds.
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(ix) Measure the forces involved in the mesoderm mantle during
neurulation, comparing the bending moments and sheering forces with the
cohesive forces between cells, in order to test the tearing hypothesis,

(x) Confirm experimentally the pattern of secondary wave fronts on
the proximal surface, and verify the timing of the formation of notochord §
starting slowly at the front, and accelerating towards the back.

(xi) Compare the timing of mitosis during the primary wave with
somite formation during the secondary wave.

(xii) Measure the parabolic slowing of the primary wave and the
slowing of mitosis, and predict the rate of decrease of size of somites.

(xiii) By some method of interference, alter the speed of either
mitosis or the primary wave, without changing the other, and predict the
change of size and spacing of somites.

(xiv) By rotating grafts, and staining, alter the primary wave
fronts and relative dominance of the animal-vegetal gradients, and wverify
the resulting change of presumptive boundaries of notochord and

segmentation arcs between somites.
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16. SLIME MOLD CULMINATION.

Slime mold is an interesting species because it normally lives as
individual cells, but is also capable of multicellular organisation. When
the food runs out the cells stop dividing, and aggregate into a slug-like
object called the grex, which first migrates and then culminates into a
fruiting body of spores (see Figure 30). When the fruiting body bursts

the spores land, and begin life again as individuals.

Spore germination Food

\ :...' :':.: :' /_Re\mcval of food
/ \

Amoebae.

Aggregation

A

Standing grex

Fruiting body

f

Culmination

Early culmination  ~w—

.

Migrating grex

Fig.ao_Life cycle of the cellular slime mould Dictyostelium discoideum.
The times refer to development on Millipore filters (Sussman, 1966).
re, p. 408)]
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PluUR; 31 N, early culmination about one hour from the
end of migration; 0, fruiting body erecting about 3 hours
after N; P, eight hours after 0, fruiting body with stalk,
spherical spore mass and tip differentiating into spores.
Length marks: N and 0, 1/ 10mm; P, 1 2mm.
Frorm Robertson [15, p. 58]
For background reading the reader is recommended to read [2,5,6,10,
14,157, and also to see the Gottingen film [7] of G.Gerrisch. Figure

30 is from [6] after M, Sussman, and the photographs in Figure 31 are

from [15]. Most mathematical modelling has been concerned with the
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aggregation process, but here we shall be concerned with culmination .
The morphogenesis of the fruiting body is surprisingly complicated (see
[2,5,21]) considering that for most of the time the species lives as single
cells. We shall explain the morphogenesis by means of a hidden primary
wave, followed several hours later by a secondary wave.

The fruiting body of spores stands on a long stalk made of wacuolated
cells, which die after they have performed their function of supporting
the fruiting body. Basically there is just one differentiation, which
divides the grex into spore and stalk-cells. There may be a slight
variation between cells at the foot of the stalk and those higher up the
stalk, but since this variation is probably continuous we are justified in
saying that all the stalk cells form one type, and all the spore cells
ancther type. Therefore, since there are only two types, this is one of
the simplest species to which we can apply the main theorem. The
theorem states that the frontier between spore and stalk must move
before stabilising, and therefore gives a primary wave. The final position
of the wave is the presumptive stalk/spore frontier, which Raper [2,6,14]
found experimentally to be about ) of the way along the grex, the front
¥ becoming stalk, and the back % becoming spore. As in the case of
gastrulation we need two hypotheses :

Hypothesis 1. The hidden primary wave begins at the tip of the

grex several hours before culmination.

Hypothesis 2. There is a secondary wave of cells submerging, and

then exuding a coating of slime. Note that in this example the

submerging cells do not retain any portion of their membrane on the
surface of the tissue as in the previous example (Figure 21), but, by
amoeboid action towards their neighbours, submerge themselves
completely into the interior of the tissue. Therefore the cells do not
keep the same topological positions relative to one another.

We shall first discuss the experimental evidence for the primary
wave (Hypothesis 1). We shall then explain how the secondary wave
(Hypothesis 2) causes culmination and the formation of the fruiting body.

The primary wave. Initially all the cells may have double

potentiality, but as the primary wave passes each cell, that cell
switches from pre-spore into pre-stalk, and loses spore-potentiality.

This is confirmed by the classical experimental results of Raper [14],
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and others [2,5,6,10,157 in which pieces were cut off the front and back
of the migrating grex, as follows.

Firstly the front pieces culminated into stalks only, with no fruit.
We explain this by the loss of spore-potentiality of the entire front third.
In the geometrical language of catastrophe theory, the piece is caught on
the lower surface of Figure 5, and no part of it can get back up onto the
upper surface,

Secondly the back pieces culminated normally, that is to say formed
normally proportioned fruiting bodies but took about twice as loeng to do it.
We explain this by assuming all the cells in the back piece to be
pre-spore, Consequently the back piece behaves just like the initial grex,
only smaller in proportion, so that a new primary wave starts at the
front of the piece, and finished % the way down the piece. This takes
some time, which explains the delay in culmination.

Thirdly, if the front pieces were cut off 24 hours before culmination,
then the pieces this time culminated normally. We explain this by
assuming that the primary wave had not yet started, and so when it did
eventually start if stopped ’§ along the piece, This puts an upper bound
of 24 hours on the delay between the primary and secondary waves. The
experimental data was not oriented towards looking for hidden primary
waves, and so is not yet sufficient to determine the delay accurately.

Remark about regulation, These results raise the question of

regulation : why does the primary wave always stop % along the grex ?
We have chosen to take this as an experimental fact but if we wanted to
explain this fact, we should have to make an additional hypothesis
concerning the nature of the gradient underlying the primary wave. In
this example there is strong experimental evidence that this gradient is
caused by diffusion, as opposed to the previous example where the
gradients in the amphibian blastula were largely inherited from the
odplasmic organisation of the egg before cleavage, rather than caused
by subsequent diffusion between the blastomeres. But in the slime mold
we start with a homogeneous collection of cells, and the simplest way
to create a gradient is by diffusion. And indeed there is evidence of
both chemical diffusion, for instance of cyclic-AMP [2,5,6,15], and
dynamic diffusion, that is to say periodic activity of cells entrained by

signals emanating from a pacemaker [5,15]. In particular the aggregation
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process seems to be initiated by chemical signals emanating from

one particular cell, towards which the others aggregate, and which then
acts as pacemaker. Subsequent periodic surges of movement, entrained
by the pacemaker, can be seen during aggregation in the film [7].
Mathematical models of aggregation suggest that the chemical diffusion
and the dynamic diffusion are interrelated [15]. When the grex begins
to migrate, the pacemaker and source of diffusion is situated at the tip [5],
while the sink of diffusion is situated at the tail. Moreover each cell
appears to seek its "own'" position relative to the diffusion gradient Ma,
possibly by means of a relative movement induced by comparison between
the entrainment clock and some internal clock.

An additional hypothesis sufficient to explain regulation would be that
cells at the diffusion source and sink should develop into specific types
of stalk and spore cells, independent of the size of the grex. Then
diffusion would induce continuity, and impose a different development upon
each of the cells in between, according to its relative position. In other
words the two ends are regulated by the additional hypothesis, and the
final position of the frontier between them is regulated by diffusion.

Culmination.

(a) Culmination begins when the grex stops moving and settles down
into an onion shape, as shown in Figures 30 and 32(a). The tip of the
grex becomes the tip of the onion, and the tail of the grex the base of
the onion, and so what were the successive wave-fronts of the primary
wave setftle into horizontal shallow saucer-shaped layers, roughly
concentric with the tip. The wave fronts are sketched (qualitatively
rather than quantitatively) in Figure 32(a).

We shall now apply Hypothesis 2. We shall show that when the
secondary wave hits this sequence of wave-fronts, from the tip
downwards, causing them successively to submerge and exude slime, then
this will cause the erection of the fruiting body. Moreover we shall
show that this causes sewveral of the wvarious qualitative features
displayed in Figure 32. The following sequence of paragraphs (b),
(€),...,(q) refer to the sequence of stages pictured in Figure 32.

(b) The first few wave—fronts have submerged, and form a roughly
egg-shaped mass M, that floats below the surface. As each layer

submerges it pulls the boundary of the next layer together at the top,
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like pulling closed the neck of a sack, enclosing M. The layer that is
pulled together at the top, in turn pulls inwards and upwards on its
successors, and that causes an equal and opposite downwards push on M,
Therefore M begins to mowve downwards, pushing the centres of the
subsequent layers downwards ahead of it, thereby changing them from
saucer-shape into cup-shape.

Soon after the cells of M have submerged they begin to exude slime,
and so M develops a cup-shaped coating of slime around it, shown by
the thick curve in Figure 32(b). This coating of slime facilitates the
downwards movement of M, under the downward pressure, and enables
M to rupture the subsequent layers, so that they become shaped like
the sides of a cup without the bottorn, Therefore topologically each layer
is first punctured at the bottom, intc an annulus, and then pulled together
at the top, back into a disk again. This topoleogical puncturing and
glueing does not in any way interrupt the passage and timing of the
secondary wave, because the latter is merely a set of local events in
cells occuring at a fixed time delay after the primary wave.

(c) By this time the downward pressure on M has pushed it clean
through the onion to the ground, where it bulges out to becorne the foot
of the stalk. The slime coating eventually dries to form a cellulose tube
round the stalk, giving it structural strength. But as yet, especially
near the top of the stalk, the slime is still slippery, and so as the
secondary wave hits each successive wave-front, causing it to submerge,
it cannot adhere to the slimy walls of the stalk, and so is forced to
adhere to the top of the stalk. Therefore the stalk starts growing
upwards, pulling the rest of the onion with it. Once the latter pulls
clear of the ground, it slides easily over the foot because the latter
is conical in shape and offers no frictional resistance. Therefore the
onion slides into shape (d).

(d) By this stage the characteristic knob has appeared at the top
of the growing fruiting body (see the photograph Figure 31), and persists
through stages (e) and (f). The structure of the knob is sketched in
detail in Figure 33. In order to describe the geometry of what is going
on in the knob, we shall assume discrete intervals of time, and have
marked in successive wave-fronts accordingly. Assuming the wave is

travelling at constant speed at this stage, then the layers B,C,D, ... etc



iy

sssss

of the knob.

t
t

a

stalk




152 E.C. Zeeman

between successive wave-fronts have equal wolume. This procedure is
not quite as artificial as might at first be supposed, because the
estimates of size below show that layers B,C may be only cell thick.
Nevertheless during the following description, let us assume that each
layer behaves as a qualitative whole.

When the secondary wave hits a cell it becomes active for a period
during which it actively submerges by amoeboid action into the interior
of the tissue, by Hypothesis 2; it then ceases to be active and exudes
slime. The active cells are in the shaded layers B and C in Figure 33,
Therefore, going through the layers in detail we hawve :

A is static stalk, no longer active, with a cylindrical cellulose wall

of exuded slime, shown by the thick line in Figure 33,

B is active, and the submerging cells of B cause B to

minimise its surface area, at the same time as adhering
to the top of A. Therefore if B has the wvolume of a
sphere of diameter &, then B will adopt a hemispherical
top of radius &, and cylindrical walls.

Lemma 6. The height of B, measured along this axis, is %3.

Proof, The volume of a sphere is % that of an enclosing cylinder
of equal height. Therefore a cylinder of equal volume has % the height.

Estimates of size. The typical grex might contain 15,000

cells (it can vary from 500 to 50,000). About % of these become spore
cells, and half the rest comprise the foot, leaving 2,500 in the stalk
itself, The stalk is about 1mm long (see the photograph in Figure 31(F),
and a cell is about 0.01mm in diameter [15], and so the stalk is about
100 cells long and 25 cells in cross-section. Therefore the stalk is
about 5 cells wide on the average, and so § is about 0,05mm, which
agrees with the photographs in Figure 31. Therefore the volume of B

is 53 times the wolume of a cell, and consequently the number of active
cells in B and C together is about 250,

Meanwhile the grex has ratio of length to width about 5:1, and
allowing for the fact that cells in the grex are slightly elongated, the
grex must be about 60 cells long and 16 cells wide. Therefore a
cross—section of the grex contains about 256 cells. Therefore the
number of cells active during the secondary wave is of the same order

as the number of cells across a wave front of the primary wave., These
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estimates help to show that our proposed knob structure is at least
plausible. We now return to the business of analysing the layers of this
structure.

C is also active, and the cells have submerged by pulling the
D layer over the top. C adheres to the surface of B,

Since C has the same wolume as B, and is at least one
cell thick, and assuming B is 5 cells across, then C can
only cover the hemispherical top of B (because a sphere of
diameter 7 has roughly 3 times the volume of a sphere of
diameter 5). Therefore the lower rim of C is at the point
g in Figure 38.

D is inactive because the secondary wave has not reached it
yet. The cells of D are pulled radially inwards over the
top of C, by the submerging cells of C, and are stretched
taut in the process., The cells of D cannot slide over the
cells of B and C, otherwise they would elastically slip back,
exposing C again. Therefore the bottom rim of B cannot
slide any higher than the point o in Figure 33, because this
is the top—-most point of the wall of slime. Therefore the
layer D is stretched over the whole of the top of B and C,
and, being the same wvolume, must be only half as thick
as C, Therefore the cells of D must be stretched and
elongated until they are only about half their normal width,
as is confirmed histologically.

E,F,... are as yet inactive, and are pulled up by D.
Therefore the outer cylinder of the knob consists of all the
rest of the layers of stalk cells, which explains why the
knob is cylindrical. Mearnwhile the spore cells are less
elastic than the stalk cells, and so at the presumptive
stalk/spore frontier, which is the final wave—front, the
knob broadens out into the shoulders of the fruiting body.

The above structure that we have proposed for the knob is somewhat

complicated, and although we have indicated how the structure might
have dewveloped initially, the question remains whether the knob can
preserve this structure. The answer is given by :

Lemma 7. The structure of the knob is time invariant,.
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Proof. We must verify that in one unit of time, each layer adopts
the shape of its predecessor, translated a distance %§ upwards. We
examine each layer separately :

A remains inactive and fixed.

B goes inactive and exudes slime. This enables the bottom rims
of layers D,E,F to slide up to g, which is now the top of the newly
made slime.

C remains active, and the effect of the submerging cells of C causes
C to minimise its surface area, and round up to the same shape as B.

D becomes active as the secondary wawve hits it, and submerges by
pulling the cells of E radially inwards over the top, to form a closed
layer over the top of D. Meanwhile the cells at the bottom rim of D
submerge, by amoeboid action towards their neighbours in D, and
therefore reduce the surface area of D by migrating from g up to v.

E is not yet active, and is stretched over D with bottom rim held
at g.

F, G, ... are pulled up.

Therefore the entire structure is reproduced isomorphically %5 higher,

Lemma B, The diameter of stalk and rate of growth are proportional

to the size of the fruiting body. Hence the time taken to culminate is

independent of size.

Proof. Let T be the unit of time. Let A be the area of
cross—section of the grex. Let v be the speed of the primary wave
along the grex — we may assume for the moment that V is constant,
since we are dealing with mid-growth stage. Then in time T the primary
wave crosses volume VAT of the grex. This must equal the volume of
one layer. But B has the wvolume of a sphere of radius §. Therefore

&7153 = VAT,

3
5 = [BVAT
41
Therefore the rate of growth of the stalk is

_Es _ [ava

T 9 'rrT2

Now T is a constant, because 2T is the time interwval of the secondary

effect, in other words the period that a cell spends actively submerging.
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Suppose that we increase A by a factor L, and the length of the grex by
a factor 4. (Normally the ratio of the length to width of grex is 5:1,
and so ) = ue, but it is not necessary to assume this.) Then the length
of travel of the primary wave is increased by u, because of regulation,
while the timing of beginning and end of the primary wave is unchanged,
because it is determined by the development of tip and tail cells,
independent of the size of grex. Therefore the speed V is increased by
4. Therefore VAT is increased by ma, which the increase in wvolume
of the grex, Therefore §, v are both increased by ,-_a.\/lu_g, which is the
increase in linear size of the fruiting body. This proves the lemma.

Remark. It might be possible to measure T microcalorimetrically.
It is easy to measure A, and it might be possible to estimate V from
detection of the primary wave. Hence one could predict and verify
& and v,

Lemma 8. The length of the knob shrinks at )% the speed that it
grows upwards.

Proof. This lemma depends upon the experimental obserwvation that,

initially at any rate, the diameter of knob is twice the diameter of
stalk [7]. Therefore area of cross—section of knob is 4 times that of
stalk. Therefore the area of cross-section of the Gylinder surrounding
the stalk is 3 times that of stalk. But the upward growth is merely
transference of pre-stalk material from cylinder to stalk. Hence the
rate of growth of stalk is 3 times the rate of shrinkage of knob.

This concludes our discussion of structure of the knob and stage (d)
of Figure 32; we now move on to the next stage.

(e) This stage occurs slightly after that shown in the photograph
Figure 31(0), and the qualitative shape of the spore-mass is slightly
more pronounced. We must explain this shape, The spore cells form
and elastic mass, that, if it were allowed to float freely in a liquid of
the same density, would minimise its surface area by adopting spherical
shape. If this elastic mass is suspended in air from the top, then
gravity would cause it to adopt a lemon-shape, as in Figures 31(P) and
32(g). At the stage we are considering in Figure 327e) the spore mass
is being pulled up from the top, but there is also a considerable
frictional drag against the cylindrical stalk, and it is the combination of

the top suspension together with downward drag, acting on the elastic
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mass, that produces the characteristic shape.

The stalk is cylindrical, because this stage corresponds to a period
during which the primary wave had constant velocity V, and so by
Lemma 8 the stalk has constant diameter b&. The friction is increased
by the fact that the slipperiness of the slime tends to get used up leaving
a dry cellulose tube, so that the drag is more pronounced at the bottom.
It should be possible to simulate these simple forces of elasticity,
suspension, gravity and drag on a computer, and produce quantitative
predictions about the qualitative shape of Figure 32(e).

(f) At this stage there occurs the characteristic hiccup®, as the
spore mass suddenly flips from the dotted profile, similar to the
previous stage (e), into the lemon-shape, similar to the secondary
stage (g). The hiccup can be seen very clearly in the time-lapse film
[7]. When the hiccup occurs the knob and shoulders do not move.
Therefore the hiccup cannot be caused by a change in the upward
supporting force, and must be caused by a sudden reduction of the
downward frictional drag. And it is easy to see why, because the point
x in Figure 32(f) is the point at which the stalk changes from being
cylindrical to conical. Measurement of the stalk diameter at x and vy,
before and after the hiccup, [7], reveals that the diameter drops from
about % to about 4 of the knob diameter. The change to conical shape
at x causes the sudden disappearance of the maximal frictional drag of
the cylinder on the bottom of the spore mass, and so friction suddenly
becomes negligible compared with gravity in determining the shape of
the spore mass. Hence the hiccup. Moreover it should be possible to
simulate the hiccup by a minor adjustment of the previously suggested
computer programme.

There remains the question of why the stalk diameter begins to
decrease. In the proof of Lemma 3 we showed that the diameter
depended upon Vv, A, and T. Now T is constant, being a property of
the individual cell, and A is constant at this stage, since it is the

cross—sectional area )4 along the grex. Therefore our attention is drawn

* | am indebted to John Ashworth for pointing out the hiccup to me,
after 1 had suggested that the morphogenesis might be caused by a

secondary wave.



PRIMARY AND SECONDARY WAVES 157

to V. And, sure enough, the primary wave slows down parabolically
just before it stabilises by {9 Corollary 3.

This gives the correct qualitative explanation of why the diameter
decreases. However we must be cautious about applying §9 Corollary 3
quantitatively, because in this application the cells do not stay
topologically in the same place relative to one another during the
morphogenesis. Therefore although the quantitative result is true for
the primary wave, it may no longer apply to the secondary wave.
Indeed, as the secondary wave comes to a halt, the continuity on which
the estimate was based, becomes less important than the timing inside
individual cells in determining their final position. This is an
interesting and delicate point, and so let us enlarge upon it.

Suppose, on the contrary, that {9 Corollary 3 was applicable to the
end of the secondary wave. Let V' be the speed of the primary wave at
time 1 before its end, and let § be the diameter, v the speed, and
n the distance of the stalk below its eventual top, at time T before the

end of the secondary wave. Then V-7, by 9 Corollary 3, and so

b o~V o~ Vj‘s ~T

by Lermma 8 above, implying
=

n~j‘\?d1‘~73~64 .
Therefore this would predict a very blunt 4th power top to the stalk.
Now the initial narrowing of the stalk , when it changes from
cylindrical to conical shape at the point x in Figure 32(f), may indeed
obey a 4th power law, and it would be interesting to measure this
experimentally. However when the stalk has reduced to a width of
1 or 2 cells then this result no longer applies because of the
individuality of cells, as follows.

The final wave front of the primary wave contains about 250 cells.
Therefore we may expect that the last few of these cells will experience
their catastrophic switch from pre-spore to pre-stalk not all together,
but spaced out, at individual times. How few, and how spaced-out, will
depend upon the noise level (for instance the amount of irregularity in
cell size and original environment)., Therefore as the secondary wave

hits each of these last few cells in succession, it will induce it to slide
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up and adhere to the top of its predecessor. Therefore the final piece
of stalk will be only one cell thick, and possibly of length comparable to
the length of the final spore mass (which is about 30 cells). This can be
seen in the final enlarged shot of the film [7], for instance, where the
stalk is only 1-cell wide at the base of the spore mass.

(g) As the last stalk cells submerge, they pull spore cells over the
top of the knob. Therefore in its final stages the knob consists of spore
cells, rather than stalk cells. Therefore it is rounded rather than
cylindrical, The final disappearance of the knob is due to the elasticity
of the spore mass trying to reduce its surface area, which is a weaker
force than that created by cells submerging. Added to this is a
renewed frictional drag, because the top part of the stalk is a cylinder
again, one cell wide. Therefore the final disappearance of knob takes a
long time, as in the film [7], and it may not entirely disappear. This
effect will be exaggerated in fruiting bodies orginating from an irregular
environment, This completes our description of the seven stages in

Figure 32.

17, EXPERIMENTS TO BE DONE.

Surmmarising, we have explained the morphogenesis of the
culmination of cellular slime mold, assuming only :

the shape before culmination,

the differentiation between spore and stalk,

that differentiation begins at the tip of the grex, and

that there is a secondary wave of cells submerging and

exuding slirne.
Our theory agrees with the classical experimental observations of
Bonner [2, and 21 p. 4863] and with many qualitative details found by
Gerisch [7] and Farnsworth [5]. The new contribution of our theory,
compared with previous theories, is that it offers an explanation of why
the local cellular forces occur in the order that they do, and how they
create the surprisingly complicated sequence of global shapes of the
culminating fruiting body. In other words it provides a link between
the local and the global in space-time.

The theary admits several testable predictions about timing and the

structure of the knob, and some of the experiments that could be done
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(i) Establish the timing and speed of the primary wave by cutting
different proportions off the front of the migrating grex at different times.
It might be possible to first slice the grex lengthways, in order to be able
to use half as control.

(i) Verify and time the secondary wawve, by grafting pieces of
pre-stalk onto pre-spore and observing when the cells submerge,

(iii) Measure the duration of the secondary effect microcalormetrically.

(iv) WVerify the diameter and growth speed given by Lemma 3.

(v) Verify the knob shrinkage speed given by Lemma 4.

(vi) Simulate the spore mass shape and hiccup on a computer,

(vil) Turn the culminating fruiting body upside down. Then after
the hiccup, when gravity becomes dominant, the fruiting body should be
fatter because it is suspended from below.

(viii) Cut off half the knob during culmination. Then the spore
mass and the remaining cut cylinder of knob stump should slide down a
little, leaving an exposed stump of stalk. Then when the secondary wave
hits the knob stump it should submerge and form a submerged solid torus
of stalk cells. Similarly one should be able to design sewveral tricks to
test the knob structure, by making the secondary wave submerge in

various different directions, (as for example in (57

18, CONCLUSION

The point of view in this paper, and the explanations, designs of
experiments and predictions in the two examples, arise from the use of
catastrophe theory. If primary and secondary waves are confirmed to
be as widespread as it seems they must be, then this by itself would be
a useful contribution of catastrophe theory to biology. But we have only
used the two simplest elementary catastrophes, the fold and the cusp., To
glimpse the potential riches offered by the use of the higher dimensional
catastrophes, one only has to glance the astonishing writings [ 18,19] of

the creator of this theory, René Thom.

O0=0=0=0=0=—0—0—0~0-0
O0—=0=0=0=0~=0—0—0—=0
O=0=0=0—0—0=0—0
O=0=0=0=0=0=0
0=0=0=0—0-=0
O=0=0=0=0
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