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Duffing's equation in Brain Modelling.

By E.C. Zeeman

Which branches of mathematics should be used to model
the brain? I do not mean local models of the individual neuron,
such as the I-iodgkin-—Huxley equations, but global models concerned

with thinking and behaviour, that attempt to relate brain to mind.

A brain model ought to be implicitly based on the underlying

neurology, and explicitly capable of predicting some psychological
behaviour. Models that only describe without predicting lay
themselves open to the charge of being useless. And indeed under
this criterion most published brain models to date are in fact
useless, including one of my own [24]. Nevertheless in this paper
I shall argue the case in favour of non-linear ordinary differential
equations, and although there is still a considerable gap between the
tentative predictions described here and those that would be required
by the experimental scientist, at least the type of model proposed

has qualities that would appear to be potentially useful in the design

of experiments.

I am indebted to Larry Markus for many interesting
discussions about differential equations. He once observed to me that
the two prototype equations whose qualities characterise the
non-linear theory are the classical oscillators of Van der Pol [21]
and Duffing [4]. These particular equations are so rich that it is

not surprising that they caught the attention of Littlewood in the
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The classical oscillators.

cariy 1940's, when he was already in his late 50's. They occupied We briefly recall their elementary properties.

much of his energy during the subseque;'nt 25 years, and began his (i) The narmonic oscillator,

famous partnership with Mary Cartwright [38]. We shall not need X+ x=0 .

to use the detailed analytic estimates found by Cartwright and This induces a flow on the phase-plane Ra, whose coordinates are
Littlewood, but only some of the more elementary qualitative %, X . The orbits of this flow are concentric circles (Figure 1).
properties. et The flow is structurally unstable because arbitrarily small damping

changes the types of orbit,
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(il1) The Duffing oscillator.

¥4 kX 4+ x + EOXC = EFcos @t
where € is a small constant > 03 k, F are constants > 03 0O=1+ew,
and @, W are parameters. This is another structurally stable
perturbation of (i). It is the simplest non-linear forced damped
oscillator. Being non-autonomous, it induces a flow not on the
phase-plane Rz, but on the solid torus RaxT, where T is a circle
representing periodic time, with period 21/0, where {1 is the
frequency of the forcing term. For sufficiently small values Of
the parameter o, & the non-wandering set of the flow consists of
either one attracting limit cycle, or else two attractors and one
saddle-type limit cycle., The amplitude A and phase lag ¢ of these
limit cycles can be estimated (to order £) by substituting

x = Acos(fit-0)

into the equation, ignoring 22, equating the coefficients of cos (it

and sin{lt, and solving for A and ¢, giving

*) Az(%aA2—2m)2 « =R
4k
tan @ = )

3aA - BW .
The equation (*) is called the Duffing amplitude relation.

For rigorous treatments see [5,7,18]. (Do not see [26] because

it contains a mistake.) The equation (*) gives the graph of A as a
function of the parameters «, W as shown in Figure 3. The

graph has two cusp catastrophes [7, 20,27,28]. The cusp points

linear resonance

spring

N

hard spring

Figure 3, The Duffing amplitude relation has two
cusp catastrophes.

are found by differentiating (*) twice with respect to A2, and

eliminating A, giving

: 3
k k
(a,w)zt(ﬁ?—,g— ) .
a/aF>
At each cusp the upper and lower sheets represent attractors, and
middle sheet saddles. When a = 0 the equation is linear, and

there is always a unigue attractor, whose amplitude reaches a

maximum A = F/k when @ = 0, i.e. when the frequency of the forcing



term eguals that of the or‘iéinal oscillator, £ = 1, causing
resonance.

The case @ > 0 is called a hard spring. If, further,
o> % tnen the graph becomes folded over because of the cusp
catastrophe. If w is slowly increased from negative to positive
wvalues, then A smoothly increases to the maximum A = F/k at a
point inside the cusp given by W = §—-§—- (which is given by the
wvanishing of the left hand side of ('B)';. If r.::. is increased further
then at the right hand side of the cusp the larger attractor will
coalesce with the saddle, and disappear, causing a catastrophic jump
into the smaller attractor, a catastrophic drop in amplitude, and
& catastrophic shift in phase. ‘Imagine shaking a small tree in
resonance, and then increasing the frequency until the tree suddenly
"turns against" the shaker. Conversely a decrease in w will
cause a catastrophic increase in amplitude, and phase-shift at the
left hand side of the cusp. For the soft spring, a < 0, events
happen in the symmetrically opposite way.

If we add further ron-linear terms, for example replace
axa by a1x3 + u2x5 + ..., then the graph of A over the enlarged
parameter space exhibits higher dimensional catastrophes such as

the butterfly, etc. The important conclusions are

(1) Non-linear oscillators typically bifurcate

according to the elementary catastrophes.

(2) Smooth changes in frequency (of the forcing

term) can cause both smooth and catastrophic

changes in amplitude and phase (of the oscillator).

(iv) The Hopf bifurcation.

An immediate word of warning is necessary, because
not all stable bifurcations of oscillators are elementary catastrophes;
it depends upon whether or not there exists a stably bifurcating
Lyapunov function. As yet the non-elementary bifurcations are
unclassified. The most famous counterexample is the Hopf
bifurcation [8], which is the 1-dimensional bifurcation exhibited by
the parametrised Van der Pol oscillator, with parameter b :

T4ecP-bk+x=0 .
When b < 0 the flow in the phase-plane R2 has only an attractor
point at trl-ua origin. When b > 0 the origin turns into a repeller,
and an attracting limit cycle appears of radius approximately 2/b.
Thus the non—-wandering set, as b varies, consists of (or more
precisely is differentially equivalent to and within £ of) a paraboloid

and its axis (Figure 4).

d attractor 1 repeller
. ) Al

—rb

Figure 4, The Hopf bifurcation.



(v) Van der Pol with large damping.

Now consider what happens when the damping €
becomes large. Let us replace £ by K to indicate its largeness.
The phase-plane with coordinates x, % is no longer a good
geometrical way to r*epr‘eseht the oscillator because even though
x may remain bounded the velocity % becomes very large. Therefore
it is better to use the "dual" phase-plane with coordinates x, ‘[x, as
follows. We begin with the Van der Pol oscillator

% 4+ K@xC-b)k + x = 0
where K is a large constant, b a parameter, and the factor 3 is

put in for convenience. Suppose that x, % take initial values

xo,xo. et
a zxa-bx —l:'-c
0 ] 0 Ko
1 pt
a(t)=a0-r<jox(‘t)d‘f. .
Then 5\=—’—<K .

Substituting in the oscillator
%+ KleBCX -bx-2l=o0.
Integrating

x + K[xa - bx - al] = constant

0, initially, by choice of ag:
Hence in the dual phase-plane, with coordinates a, x, the oscillator
is represented by the flow given by the two first order equations :

-k = b= al

Ha
U]

Fast equation
i . 3
Slow equation a = “RX .
The qualitative difference between "fast " and "slow" is determined

by the size of the damping K.

We call the curve in the (a,x)-plane given by

xs -bx-a=0
the slow manifold. If we now allow b to vary then the same equation
gives a surface in (a,b,x)-space which is none other than the

canonical cusp catastrophe surface, with normal factor a and

splitting factor b (see Figure 5)

equilibrium

Figure 5. WVan der Pol with large damping is a
cusp catastrophe with feedback flow.

The slow manifolds are the sections of this surface given by

b = constant. Off this surface the fast equation ensures that orbits
are nearly parallel to the x-axis (where "near" means of order 1E) &
Thus the fast equation acts as a catastrophe dynamic for the
variable x, making the upper and lower sheets (given by 3:-:2 > b)

into attractors, and the middle sheet (given by 3x° < b) into a repeller,

e



This fast dynamic does three things : firstly it rapidly carries any
point onto the attracting surface (or more precisely near the surface),
secondly it holds the point on (or near) the attracting surface for as
fong as possible; thirdly when this becomes no longer possible, for
example when the point crosses one of the fold curves (given by
ng = b) bounding the attracting surface, then the dynamic causes
a catastrophic jump onto the other attracting sheet.

Once x lies on (or near) the surface, then x = 0
(or is of order -:-(-), and so the slow equation comes into its own,
causing the point to flow slowly along (or near) the slow manifold.
In the language of catastrophe theory, the slow equation is a
feedback flow of the fast "beha\l.'icmr" variable x upon the slow
"control" parameters a,b. When b < 0 the slow equation makes the
origin a = x = 0 into a unique attractor point. When b > 0 the
origin turns into a repeller point, and the slow equation creates a
new hysteresis cycle, consisting of two portions of slow flow along
the upper and lower attracting sheets of the slow manifold,
alternating with two fast catastrophic jumps between the two sheets,
(See [25] for more details and pictures).

Thus the Van der Pol oscillator with large damping, and
its accompanying Hopf bifurcation, are both represented as
additional structure superimposed upon the elementary cusp catastrophe,

even though the Hopf bifurcation itself is non-elementary. The

important conclusion is :

1

(3) Non-linear oscillators with large damping

can _sometimes be interpreted as slow feedback

flows on elementary catastrophes.

Having extracted some general conclusions about the way
that non-linear oscillators can behave and bifurcate, and having
expressed them in the language of catastrophe theory, we now
return to the brain. 1 like to approach t:he brain as a collection
of strongly coupled oscillators, driving one ancther. The stability
of our instincts, habits, and memories indicate strong stability
of some of the oscillators, and the swiftness of our- reactions
indicates a coexisting instability due to strong coupling. But

before we proceed further, it is a good idea to mention briefly a

few neuro-psychological experiments to support this point of view.

2. Neuro—-psychological experiments,

(1) Shutting the eyes and relaxing induces the a-rhythm.
The a-rhythm is an observed frequency of about 10 cycles per second
in the EEG (electroencephalograph) pattern. It probably indicates
that large parts of the brain are oscillating in resonance.

(ii) 1 once asked a mathematician under EEG to calculate
a complicated homotopy group. The recording needles stopped dead
for a minute while he thought, and then started again once he had

given me the answer. This probably indicated a lack of resonance

- during the specialised cortical activity.



(til) During epilepsy operations Penfield [13] touched
the surface of the brain with a small electric oscillator, and patients
reported induced memories and a double reality. Moreover the same
mernories recurred when the experiment was repeated.

(iv) Adey [1] recorded oscillations from a number of
alectrodes implanted in a cat's brain, in the limbic system near the
hippocampus. When the cat was r-eiaxing the frequencies varied
between 4 and 7 cycles per second, but when a trap-door opened
leading to food, then all the oscillations locked onto one frequency
{of about & cycles per second), with a specific phase ordering. If
the cat made a wrong turning at a T-=junction, then the phases

hunted, until the cat turned back to the correct turning when they

locked on to the correct ordering again.

3. What is an oscillator ?

What is the connection between the classical equations,
and the behaviour of the complex biclogical systems that we have
so glibly called oscillators? We cannot possibly measure all the
important events taking place in the brain, or even those in one
organ of the brain. Nevertheless it is possible to imagine a
mathematical dynamical system of sufficient complexity to model
those events, From general theory we now that such dynamical
systems can have attractors, which can bifurcate., Moreover,
although we cannot measure those attractors, nevertheless we can

sometimes catch their bifurcations by means of artifacts. For

example the EEG pattern obtained from electrodes placed on the
outside of the skull would appear to be ‘an artifact, whose behaviour could
not possibly give any significant information about the important
dynamics within., Yet when the attractor inside makes a catastrophic
jump, the artifact outside may well display a sudden qualitative
change in behaviour. Such gualitative changes are easy to

recognise in the resulting EEG pattern. Moreover when they occur
at the same time as psychological behavioural changes, such as in
the experiments described above, then it strongly #uggests that the
artifacts are echoing the important bifurcations and catastrophic
jumps within, Extending this argument to more than one dimension,
# an attractor is bifurcating at:".cor'dlng to a higher dimensional
catastrophe, then the measurements of the artifact may reveal a
diffeomorphic copy of the same catastrophe [29]. Hence, although
the artifact may be but a pale shadow of the intermal dynamics,

yet its catastrophes may furnish a brilliant reflection of significant
events., In this sense the artifact may provide a non-trivial
qualitative model for the underlying nel...lr'ology. Therefore the
procedure of measuring and using neurological ar‘ttl‘gct‘s to predict
psychological behavioural changes is scientifically tenable.

Let us now put the above discussion on a more concrete
mathematical footing. Suppose that we model a biological system B
by a mathematical dynamical system, that is a multidimensional
manifold M, together with a vector-field X on M, In the case of the
brain we are quite prepared for the dimension of M to be as high

1
as 10 0. the number of neurons, or 10“, the number of synapses.
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represent the homeostatic state of B, The Co-deﬁsity thearer
of Smale [171,5hub [16], and d'Oliveira [11] says that, by making
an arbitrarily small Co—per‘turbation if necessary, we can assume
that X is structurally stable and that the only attractors of X are
points ( = stable equilibria) or closed orbits (= limit cycles).
Point attractors are easy to understand, and if B is
parametrised, or driven, by another system then those points will’
bifurcate according to only the elementary catastrophes.
However there are two reasons why the- closed orbit
attractors are more important than the point attractors. Firstly the EEG
evidence suggests that periodicity is the rule, and static equilibrium

the exception. Secondly from the evolutionary point of view, the

brain that can respond more s»;iftly than its neighbours to the
environment has an evolutionary advantage. And if the dynamical
system of the brain only had point attractors, it would remain stable
when weakly coupled to any other stable system (representing some part
the environment or some sensory input), and hence the brain could
not respond. On the other hand a system with closed orbits can
resonate with, or lock-on to, the attractors of the other system,
however weakly coupled, thus enabling the brain to respond swiftly.
(See [2,19] for the underlying theorems). Hence we would expect
the brain to evolve non—gradient dymamics and limit cycles. By
contrast the developing embryo does not want to be too perturbed by
the environment during the crucial stages of development; hence we

would expect it to evolve gradient dynamics and equilibrium states,

as indeed it bhas.

A
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We now bring this abstract multidimensional theory down
to earth by relating it to ordinary differential equations, such as the
classical oscillators that we started with.

Lemma. If y is a measurement of a closed orbit of an arbitrary

dynamical system, then there exists a second order differential equation

having y as its unique attractor.

Proof. Let C be the given closed orbit in M. By
suitable choice of time unit, we can assume that C has period 2T,
Let T denote R modulo 2T, representing periodic time, and let T = C
f

pe the diffeomorphism giving the timing.j round the orbit. Let M - R
be the given measurement. For instance a point in M might represent
the brain state, and its image in R the resulting potential difference
across two electrodes on the skull, measured by the EEG. Let y
denote th& composition

T-CSM=R
Then y(t), t € T, will be the periodic function of time recorded by the
EEG.

Let ;(t), W(t) dencte the derivates with respect to t. Let x, x

be coordinates ln.Ra. Define

P: R xT~R
by ¥(x,%,t) = W) + 2(t) = X) + 2(/(t) = X).
Then

® = ¥x, %,

is the required differential equation. It can be verified by substitution
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that the general solution of the equation is
=t
x(t) = y(t) + Ae “cos(t-¢), A,p constants.
Hence all the solutions decay to y(t), which is therefore the unigue

attractor, as required.

4. Summary of the modelling method,

The main points of our discussion so far have been :

(a) We assume that we can model the activities of the brain
by multidimensional dynamical systems.,

(b) By the Co—density theorem, we confine our attention to
clnsed orbit attractors, and hence to second-order differential equations.

(c) Some of the bifur‘cattons of the latter are modelled by
€lementary catastrophes.

(d) Neurological artifacts may exhibit diffeormorphic catastrophes,
and hence provide measureable models for psychological prediction.
We conclude that some brain activities may be modellable by elementary
catastrophes. It would be wrong to deduce any stronger statement, because

(a) It may not be possible to model the relevant brain a.cti\:'ity
by a dynamical system,

(b) The Co—densify theorem has not yet been generalised to
parametrised systems,

(c) Some bifurcations are non-elementary.

(d) It may not be possible to measure anything that exhibits
the relevant bifurcation.

For further discussion see [19,20,28,29].

We Tow Give B e o AppTIEatIoRE T BT ooy
catastrophic jumps. These examples are really not so much predictions
as suggestions for designs of experiments.
(a) Sansor*z inputs.

Most sense organs convert amplitude into frequency.
For example brighter lights cause the neurons in the optic tract
to fire with the same action potential but more rapidly. Similarly
louder noises, sharper pains, etc., all cause increased firing rates.
When the frequency of firing reaches a certain threshold, then the
brain will suddenly pay attention. Now the Duffing soft spring
provides a simple model in which a frequency threshold causes a
sudden jump in amplitude (see Figure 6). Herje the forcing term
represents the input message from the sense organ to the brain,
and the oscillator represents the brain's response.

In Figure 6 the fr‘ec;uency threshold occurs at w,- If
the inmput freguency is now reduced again, then the model makes a
prediction about hysteresis, which could be tested experimentally :
the response does not switch-off again at wg, but at a lower
frequency @ . Indeed between wy and w, the amplitude of the

response is in fact slightly enhanced. The hysteresis w2 - mT could
be measured.

Another question that could be tested experimentally is
the hardening or softening effect due to changes in arousal, fatigue
or practice. A second prediction would be an anti-correlation
between threshold and hysteresis : if the threshold w5 drops

- ! would increase, and

(implying softening) then the hysteresis u.‘2 4

conversely if the threshold increases (implying hardening) then the

hysteresis would drop.
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- 1
attractors, which is a linear flow on an attracting torus. However
St threshold
the latter is structurally unstable, and an arbitrarily small gereric
% o perturbation will, by Peixoto's Theorem [123, furnish a new stable
AE
— == system with a new attracting closed orbit on the torus. (This process
control = > 9 g E
w w w O ls th king- h i P
% s 5 tau’,3 torcing frequencyr W is analogous to the locking-on phenomemon in the forced Van der Pol
L] T
=2 = o 1 i oscillator.) The new attractor represents the new associative memory,
associating the two previous memories.
y w . The beauty of this model is that it needs only arbitraril
“o “y “2 “y % ) @, y y
wl' 'l' l ']r L & qu small random synaptic perturbations in order to work. By contrast
forcing term most models of associative memory, particularly those used in
the design of artificial intelligence machines, need to assume a
. feedback systern of synaptic changes in order to work. For example
oscillator
a typical machine "learns" by turning up the gain on all those
synapses it has just used every time it gives the correct answer;
Figure 6. The Duffing soft spring sketched for therefore it needs a feedback system from the "answer" to the
K=F =1, a= -4, The input frequency is
increased to up to W, and down again. The synapses. And it is unlikely that a real brain could contain the
threshold occurs at & , and switch-off at w, .
¢ 1 abundance of such feedback systems, that would be necessary to
. explain the apparent ease with which we make all marner of
(b) Association.
associations all the time.
We begin with an idea of Thom [19]. Suppose two «

memories, as yet unassociated, are each represented by an

(c) Recall.
attracting closed orbit of a dynamical system. The words "as yet ;

Consider a stimulus recalling a memory. Represent this

unassociated" mean that we can represent both together by the

by an oscillator driving ancother oscillator. The simplest model is
product of the two systems, Therefore when the two memories are

Duffing's equation, with the forcing term representing the stimulus,
stimulated together they are represented by the product of the two

and the oscillator the memory. Let us further suppose that when the
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the memory is first laid down the equation is linear, a = 0; therefore
when the stimulus hits the resonant frequency the memory resonates

accordingly (not unlike Thom's model above ).

Now suppose that the memory is allowed to lie dormant

for some period, before the stimulus is given again. There are two

possibilities according as to whether or not the mind has been thinking

about closely related thoughts during the intervening period. If it has,

then facilitation of the nearby synaptic pathways may make the oscillator

easier to drive, in the sense that its amplitude and frequency become

correlated, because of the proliferation of short-cuts available in the

neural pathways. In other words the oscillator turns into a hard spring,
.

@ > 0. Therefore when the stimulus is given,

to
the forcing fr‘equencyzthe original resonant frequency w = 0, then the

represented by increasing

amplitude of the oscillator will increase sSmoothly to a value lower than

the original resonance. Hence the memory will flow smoothly to mind,

quite unobtrusively,

By contrast, if the mind has not been thinking about any
closely related thoughts, then the oscillator may become more

difficult to drive, in the sense that amplitude and frequency become

anticorrelated. In other words it has become a soft spring, @ < 0
(like a simple pendulum). In this case when the stimulus is given
then the amplitude will make a sudden jump just before the forcing
frequency hits the original resonant frequency (see Figure 6)., In

other words the memory will suddenly spring to mind.

21

The difference between memories that flow-to-mind and
spring-to-mind is a well known phenomenon; for instance consider the
ease with which we remember our friends' names, compared with the
difficulty of pgtting a name to a familiar face that has not been seen for
sometime. It is remarkable how that missing name can sometimes
suddenly spring to mind. It would be interesting to try and devise
psychological experiments to test this difference between memories
that flow-to-mind and spring-to-mind, and to measure the size, s, of
the catastrophic jump in the latter case. If this were possible then
the model gives a quantitative prediction, as follows.

During the period while the memory is lying dormant
and while the oscillator is soft;ning, there is a unigue critical moment,
at time t say, when @ crosses the cusp-point. This is the precise

o
moment when the latent memory is "forgotten", in other words is
switched from being a flow-to-mind into a spring-to-mind type. In
the neighbourhood of the cusp point, the size of the latent catastrophe
increases parabolically with time. In other words we have the
guantitative prediction

s = Aq,;t—-—.% + o(t-t ), A constant > 0
(d) Mood.

The influence of environment upon mood and emotion has

he models. For example
features that strongly suggest the use of catastroph Py B

the persistence of mood, the sudden changes of mood, the delays before
. . o
the possibility of different moods under similar circumstances, and th
i i ies
inaccessibility of other intermediate moods, all these five propertie

are typical
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of the bifurcation of oscillators [28]. How do we measure mood?
According to Macl ean [10,22] emotions are probably generated in the
limbic system (roughly the middle third of the brain), and so the
oscillators involved would be modelling limbic organs, notably the
hypothalamus. It is difficult to record directly from the limbic
System, but the direct connections from the hypothalamus to the
frontal lobes suggest that the latter might provide artifacts, that
would echo limbic catastrophes, Similarly physiological Indicators
of autonomic nervous activity can provide artifacts, such as the
facial expressions of a dog indicating the levels of fear and rage (9],
Contrary to what might be suspected at first sight,
rhood may in fact be cne of the simplest brain activities to model,
Possibly much simpler than, for example, the old favourites of
visual perception, aural perception, language and problem solving.
For emotionally we tend to be in one mood at a time, whereas
intellectually we are able to grasp many things at a time. Perhaps
this is because the limbic system tends to oscillate in resonance,
due to its 3-dimensional interconnectivity, whereas the cortex is able
to oscillate out of resonance, differently is different parts, due to its
2-dimensionality and its lateral inhibition. If rood can be represented
by a single attractor, then although the infinite variety of nuances of
mood would be difficult to measure because they would be represented
by smooth variations of this attractor, nevertheless the noticeable
changes of mood might be relatively easy to model using catastrophe
models of the attractors bifurcations, and might be relatively easy

to predict using artifactual measurements.

23

(e) Behaviour.

The influence of mood and emotions upon behaviour is the
next step. Again, the persistence of behaviour, the sudden behavioural
changes, the delays before making those changes, the possibility of
divergent behaviour under similar emotions, and the inmaccessibility of
other intermediate behavioural patterns, all suggest catastrophe models.
A simple example is the cusp catastrophe model of fear and rage as
conflicting factors influencing aggression [28). There are many such
psychological models, for both man and animals, waiting to be tested

experimentally against neurological and physiological measurements.

N Anoresia nervosa.

Anorexia is a psychological disorder, in which dieting
degenerates into obsessive fasting, leading to severe malnutrition and
possibly death. It sometimes develops a second phase of alternately
fasting and gorging. The psychotherapist J., Hevesi and I conjectured
that the cause might be an elementary bifurcation of the brain oscillator
underlying eating and satiety. This gave rise to a S5-dimensional
butterfly catastrophe model [28] of both the disorder and its cure
under Hevesi's successful technique of trance therapy. This model was
effective in permitting a coherent synthesis of a large number of
observations that would otherwise appear disconnected. It also made
sense of some of the victims' bizarre descriptions of their own
disorder. Furthermore it gave insight into what might be the key

operative suggestions of the therapy, which is psychiatrically useful
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in helping to explain the technique to other therapists.

One of our projects is to ext.end the model to include sleep,
because the disorder interferes with the natural catastrophic jumps of
falling asleep and waking up. It is likely that the enlarged model
could be a section of the 10-dimensional double-cusp catastrophe, of

which the mathematics is as yet poorly understood [30]. Even so,

the S5-dimensional geometry of the butterfly catastrophe is already

sufficiently rich to have made some gqualitative predictions that have
been confirmed by observation, What is now needed, parallel to the

theory, is a programme of quantitative testing of the model, for

instance the monitoring of EEG and physiological changes in patients
during the different states of fasting, gorging, sleeping, dreaming,
therapy, etc., and the development of numerical techniques to convert

these readings into geometric form, in which higher dimensional

catastrophes can be recognised, and verified,

(9) Manic-depression,
—=crdepression,

I am indebted to
Figure 7.
T.C. Dumn for introducing me
both to his patients and to the

literature on the subject. In

[27] 1 Suggested briefly that depress'\o"‘

. . iron
normality, mania and %’W e mer:tf

-

depression might fit into a
Cusp catastrophe, as shown in abnormality

Figure 7 with S0mMe measure of compatibility with the environment as
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rmal 13Ct0‘?' and some clinical measurement of the abnor'ltlahty
a no »

= lltt(ﬂg factor. e changes between the two at'lQnglCal states
as sp r Tt P

i i n mind
quickly compared with the time spent in either state. I had i
) T 3 s = : t"\e
a bifurcation of some attractor in the limbic brain, similar to
ever
rexia model, of frequency say a few cycles per second. How
ano »

ini t
M. Schmocker of Tubingen University Nervenklinik suggested tha
. Sc

i i . Her
an oscillator with a 24 hour period might be more appropriate

studies on sleep deprevation, with results similar to those of Pflug (14],
had shown many indications of the disturbance of circadian rhythms
amongst depressive and manic-—ldepr*essive patients,

* Therefore let us take the Duffing oscillator as a tentative
model, with the forcing term representing the external rhythm of

day and night, and the oscillator representing the diurnal variation in
the blood content, measured for example by the level of plasma

cortisol [15,233. The limbic brain is directly involved because cortisol
production is controlled by the pathway : hypothalamus — pituitary = ACTH
secretion — adrenal cortex — cortisol secretion — blood (see [23]).

With this type of control a correlation between freguency and amplitude
of the oscillator is plausible, since overstimulation of hypothalamus is
liable to increase both. Therefore let us assume the oscillator

behaves like a hard spring, & > 0.

What we have said so far applies to the normal person.

i = in hypothesis
We now turn to the manic-depressive, and take as our main hyp

i i i f the
that the underlying cause of the abnormality is a speeding up ©
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i A :
nternal circadian rhythm. Mathematically this is equivalent to

decreasing the relative frequency @ of the forcing term. Figure B

amplitude, A

w

phase~la

out of phase

il LR D

< decr

Figure 8.

illustrates the

relative forcing frequency, w

:s det:rease in the relative forcing frequency w causes
catastrophic increase in am litud
e
phase-shift, g M

The Duffing hard spring drawn for k = F - 1, a=4

consequences : when W reaches the threshold w, this
1

causes a catastrophic prise in the amplitude A and a catastrophic drop

In the phase-lag ¢. This is exactly what is observed in some

depressives , a

substantial increase in plasma cortisol and a forward

phase-shift [15]. The fact that the oscillator is now nearly in phase

i
with the forcing term could mean that cortisol secretion is now being

paradoxically triggered by the presence, rather than the absence, of

corti i
sol already in the plasma. Moreover the hysteresis effect locks
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the system in its abnormal state, even if the internal circadian

rhythm slows down again : @ has to reach w2 before recovery is

possible.

We now turn to the psychological effects. It is known

in Cushing's Syndrome [23], that an overproduction of cortisol due

to other causes, for instance an adrenal tumour, is liable to cause

mental changes, such as changes of mood ranging from depression

to mania.

Therefore we can expect these moods to arise from an

increase in amplitude due to the Duffing catastrophe. Meanwhile

phase-shift symptoms are also observed : sleep patterns are

disrupted,

manics often enjoy a vigorous night-life, and depressives are

often unable to face the day. If half the body metabolism is out of

phase, and sending conflicting messages to the limbic brain, no

wonder the latter is liable to generate abnormal moods.

there should be an equally simple cure :

Then the abnormal internal circadian rhythm will reassert itself, causing

If the underlying cause of the abnormality is so simple,

just remove the forcing term.

a catastrophic renormalisation of both cortisol level and phase. This

is exactly what happens in the sleep deprivation treatment [14]., A

depressed patient is kept vigorously awake and active all one night,

and in the morning is cured!

reported :

"After this she felt like a changed person, she
could enjoy her breakfast and experience pleasure
again. She wanted to make things and read. She

said she had not felt so well for 6 months."

One 30-year old manic-depressive patient
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The snag is that the cure generally lasts only 2 or 3 days. Some
fortunate patients stay well (protected by the hysteresis effect) but
the more severe depressives revert as soon as the forcing term
reasserts itself, i.e. as soon as the patient begins to keep regular
hours again,

A éimple test of the model would be to remove the
forcing term for a longer period, by providing an artifical
environment without day and night, or by living in the continuous
sunlight of the artic summer for instance, so that the patient
could revert to his own circadian rhythm. Once the period had
been established, then he might be able to devise a life-style to
suit; admittedly it can be awkward living a non-24-hour day, but
v\for-thwhile if it gives freedom from depression. For example
Schulte [14] reports that some victims had independently discovered

a method of relieving their own depression by taking sleepless

nights periodically,

Anocther possible cure might be to place a tiny alternating
electric field across the patient's bedroom; for Wever [22] has shown
that for subjects isolated for a month in an underground electr‘omagneticalty
shielded bunker, a background field as small as 2.5 volts per metr:‘e at
10 cycles per second can have the power of synchronizing the endogenous
oscillators, and entraining the circadian rhythm. The usual treatment

for manic depression is the drug 'lithium £GJ, which in terms of the model,

may interfere with the oscillator sufficiently to cancel the Duffing catastrophe.

However the trouble with lithium is that it can have unpleasant side effects,

and an over-accumulation can cause lithium poisoning, possibly resulting

in tremor, slurred speech, even coma or epileptic siezures.
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We now return to our main hypothesis, and ask what
happens if the circadian rhythm slows down instead of speeding up.
The prediction from Figure 8 would be a slight decrease in amplitude,
and slight phase-shift the opposite way, but since no catastrophes
would be invol-ved. this would hardly be detectable, except by
statistical analysis of a large number of normal people. However
if the intem-al rhythm were to slow down exceptionally to a pericd
of more than 36 hours, then the oscillator instead of locking-on to
the forcing term would lock—-on to its second harmonic with a similar
catastrophe as before. This is exactly what happens in certain rare
cases of manic—depressives, who develop a 48-hour cycle (6]. The
patient described in [6] r‘Egular'-ly suffered from one day of depression
a'lternating with one ::!ay of hypomania for thirteen years, with the
change of state occuring each night during sleep, usually between

2 and 3 a.m. Wnhen the patient was put in an artificial 22-hour
environment, then, as would be expected from the model, he locked-on
to a 44-hour psychotic cycle.

We conclude by emphasising the tentative nature of the
model, and pointing out some reservations. Firstly it does not
explain the difference between mania and depression; perhaps it
could be combined with Figure 7 into a higher dimensional catastrophe
model, compatible with the 48-hour syndrome. Secondly, a closer
analysis of cortisol [15] reveals that it is secreted in a series

sed
of 7 to @ major episodes during the 24 hours. Therefore superimpo
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upon th ircadi rhythm & i subrhythm
/] € clrcadian rhythm are physiological sub hythms, and any
r

effective rmodel should not only be compatible with the latter, but
also perhaps offer an explanation for, and prediction of, the
pPsychological _subrhythms of eating/satiety and sleeping/dreaming
One thing is clear :to develop and test such models will need

long-t i
g-term colaboration between mathematicians interested in

d .
ynamical systems and Physiologists and psychiatrists

10.

11.

12,

13.

14,

a3t

References.

Adey, W.R., Dunlop, C.W. & Hendrix, C.E., Hippocampal slow
waves in learning, Arch. Neurol. 3 (1960) 74-90.

Arrowsmith, D.,, Products of flows, Proc. Camb, Phil. Soc.
73 (1978) 301-306.

Cartwright, M.L. & Littlewood, J.E., On non-linear differential
equations of the second order, Jour. Lond. Math.
Soc. 20 (1945) 180-189, and Ann. Math. (2) 48
(1947) 472-494,

Duffing, G., Erzwungene Schwingungen bei veranderlicher
i Eigenfrequenz, Braunschweig, 1918.
Hale, J.K., Ordinary differential equations, Wiley Interscience,

1969.

Hanna, S.M., Jenner, F.A., Pearson, 1.B., Sampson, G.A., &

Thompson, E.A., The therapeutic effect of lithium carbonate on a
patient with a forty-eight hour periodic psychosis,
Br. Jour. Psychiatry 121 (1972) 271-280.

Holmes, P.J. & Rand, D.A., The bifurcation of Duffing's equation :
an application of catastrophe theory, Jour. Sound
and Vibration 44, 2 (1978) 237-253.

Hopf, E., Abzweigung einer periodischen Lgsung von einer
stationdren Losung einer Differentialsystems, Ber.
Verh. Sidchs, Akad. Wiss. Leipzig. Math. Phys.,
95 (1943) 3-22,

Lorenz, K,, On agression, Methuen, London, 1966.

MaclLean, P.D., The limbic brain in relation to the psychoses,
Physiological correlates of emotion Academic
Press, N.Y., 1970.

de Oliveira, M.M.C., Co—density of structurally stable vector fields,
Thesis, Warwick University, 1976.

Peixoto, M.M,, Structural stability on two—-dimensional manifolds
Topology 1 (1962) 101-110.

Penfield, W. & Roberts, L., Speech and brain mechanisms,
Princeton, 1959.

Pflug, B., Therapeutic aspects of sleep deprivation,
1st Europ. Congr. Sleep Res., Basel (1972) 185-1¢




i7.

18,

19.

20.

21,

22,

23.

24,

25,

26.

28.

29,

30,

Sachar, E.J., Hellman, L., Roffwary, H.F,, Halpern, F.S,,
Fukushima, D.K. & Gallagher, T.E., Disrupted 24-nour patterns

Shub, M.,

Smale, S.,

Stoker, J.J.,

Thom, R.,

Thom, R,,

Van der Pol, B.,

Wever, R,,

Wright, Sampson,

Zeerman E.C.

of cortisol secretion in psychotic depression,
Arch. Gen. Psychiat, 28 (1973) 19-24,

Structuraily stable diffeomorphisms are dense,
Bull, A.M.S. 78 (1972) 817-818.
— e Ve

Stability and isotopy in discrete dynamical
systems, Dynamical systems (Ed. Peixoto, M.M.)
Academic Press, N.Y., (1973) 527-530.

Non-linear vibrations, Interscience, 1950.

Topologie et signification, L'Age de la Science,
4, (1968) 219-242,

Stabilité structurelle et morphogénése, Benjamin,
N.¥. 1972, Eng. translation by Fowler, D.H.,
Benjamin-Addison Wesley, N.Y. 197s.

On oscillation hysterisis in a triode generator
with two degrees of freedom, Phil. Mag. (86)
43 (1922) 700-719.

Human circadian rhythms under the influence of
weak electric fields and the different aspects of
these studies; Int. J. Biometeor 17 (1973) 227-232.

Applied physiology, 12th Edition (Rev : Keele,
C.A. & Neil, E) Oxford Univ. Press, 1971,

Topology of the brain, Mathematics and computer
Science in biology and medicine, Med. Res. Council
Publ., 1965,

Differential equations for the heartbeat and nerve
impulse, Towards a theoretical biology, 4 .
(Ed. C.H. Waddington) Edinburgh Univ. Press
(1972) 8-67.

Catastrophe theory in brain modelling, Inter. J,
Neuroscience 6 (1973) 39-41,
—nrence

Applications of catastrophe theory, Manifolds Tokyo
1973, Tokyo Univ. Press., 11-23,

Catastrophe theory, Scientific American, 234,
4 (1976) 65-83.

Brain modelling, Symp. on Catastrophe Theory,
Seattle 1975, Springer Lecture Notes in Maths, ,
(to appear).

The umbilic bracelet and double~cusp catastrophe,
ibid.




