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1. THE SIMPLE EULER ARCH.

We begin with a simple example consisting two rigid arms
supported at the ends and pivoted together at the centre, with a spring tendiing

o
to keep them at 1B0", as illustrated in Figure 1.

Figure 1. The simple Euler arch.

If the ends are compressed with a gradually increasing horizontal force g then
the arms will remain horizontal until § reaches a critical value, when they
will begin to buckle upwards (or downwards)., If 3 is now fixed,
and a gradually increasing vertical load g is applied to the pivot, as in
Figure 1, then the arch will support the load until a reaches a critical value,
when it will suddenly snap catastrophically into the downwards position. It is
this behaviour that we shall explain by our first cusp catastrophe.

Suppose that the arms each have length 1, and let L denote the

modulus of elasticity of the spring. Initially we assurme g = 0.

Theorem 1. The arch buckles when g = 2u.

Before proving theorem 1, we go on to describe what happens in the

neighbourhood of the buckling point. Let B8 = 2u+b, and let x denote the angle
of the arms to the horizontal. We assume q,b,x are small, In 38-dimensions
choose the (a,f)-axes horizontal, and the x-axis vertical. Call the horizontal

(a,B)-plane the control plane, C. Let M be the graph of x as a function of «,8.
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Theorem o, M is a cusp catastrophe with (-a) as normal factor and B as
‘,..--""‘_-_-_-_-_-_

factor (Figure 2).

| splitting

(1) comp ressed,

dotted path shows the arch
(3) loaded, and (4) snapping

Figure 2. The
(2) buckling upwards,

downwards.

Proof of Theorem 1.

- ; 3 1 2
Energy in spring = 5 w(2x) .
Energy gained by load = @sinX .

Energy lost by compression = —25(1-cos x)

)

total energy, V = 2y + asinx — 28(1-cosX).

= 0, where the prime denotes alax.

The surface M of equilibria is given by V' =

The fold lines are given by v" = 0, and the cusp point by V' = 0.
V' o= 4px + acosX — 28 sinx = 0
V' = 4 - asinx = 2pcosx = 0O

- gcosx + 2B sinx = 0 .

V=
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Add the first and last : 4ux = 0, Buty # O. e X = 0,
Substitute in the first : gqcosx = 0, o s
Substitute in the second : 4y -~ 28 = 0. B = 24,

This completes the proof of Theorem 1,

Proof of Theorem 2, Put g = Sutb. Let 05 denote O(xs). Therefore
2 xs x2
2ux + a{x—-g) + 2(2utb)(- —2-+

4
pll

B
24)-{—0

v

]

2 a3 2ytbh 4 5
- bx - =x + —=—x + O ,
o 6 12

1]

Whena=b:0,v=gx4+05.

’ o 3
Hence x obeys a cusp catastrophe since u > 0. We can eliminate the x ~term

25

+ ——————, and then eliminate the tail
1 2(2utb) !

by the translation of coordinates x = x
of the Taylor series by a non-linear change of coordinates by [9, Theorem 2,97
Therefore

V~gx4+ax—bx2 ¥

by the isomorphism of unfoldings [9, Theorem 86.9]. This is the potential for

a cusp catastrophe with (-a) as normal factor and b (or f) as splitting factor,

thus completing the proof of Theorem 2 and Figure 2.
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2. THE EULER STRUT.

We now turn from the discrete to the continuous, from the

simple pivot to the elastic strut®, compressed under force 8, as shown in

Figure 3.

Figure 3. The Euler strut.

Let X denote the length of the strut, and p the modulus of elasticity per unit

length.

Theorem 3 (Euler [3] 1744). The strut buckles when 3 = u(rr/)_)g. The buckled

shape is a sine-curve, to second order,

Proof. Let s be a parameter for arc-length, 0 = s = 4. Let f(s) denote the

vertical displacement of the point s, which we assume is small., The shape

of the strut is therefore given by the function f£:.[0,)] = R. We assume f is a
C®-function satisfying the boundary conditions
f = 0 at the ends (since the ends are supported),

' = 0 at the ends (since there is no bending moment there),

where primes denote 3/3s. Let 8(S) be the inclination of the strut to the

horizontal at s. Then

* The Battelle Research Centre conveniently provides plastic Euler struts for

which when held between thumb and forefinger make excellent

stirring coffee,
x 4" piece of thin cardboard.

experimental material; otherwise try using a 1"
See Figure 7.
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f' = sing
f' = cosg. 8
2 !
. «Ccurvature = §' =
cos §

]

', neglecting fourth order terms

. S 2
. .energy in increment ds of strut = %pds)f")

L R
L .energy in strut =3édpo u(f”)gds

The contraction between the ends = I;‘U—cos A)ds
g2
=%[(f) ds
.".energy lost by compression force = — %Iﬁ(f')ads

. .total energy, V = [Fds, where F = %[u(f”)g = B(f')EJ-
By the calculus of variations, using the boundary condition, the requirement
for equilibrium is given by the Euler equation
() - () -
af)  ~ af') -
oo BPM4 B = 0,
Solving this equation, using the boundary conditions,
f(s) = x sin(s./E/n),
where x = constant, and )./B75 is a multiple of 1. Therefore, if § < u(n/")\)Q,
only the zero solution is possible. Buckling first begins when
B = p.(ﬂ/lf and then, to second order,
fis) = xsinﬂf—, x small constant .
The solution is correct to second order because the next term is of order

3 .
x (see below). This completes the proof of Theorem 3.

Harmonics.

Write f as the Fourier series f(s) = bl X sin I"l)I:I’S . We call xn

1

th ;
the n harmonic of f.




Meaning of x.
Meanlhng © S

The constant x occuring in the proof of Theorem 3 above can be
interpreted in three ways, which agree to first order, but differ in higher

orders

(i) x is the vertical displacement of the centre of the strut.
(i) x is the first harmonic of f.
(iii) x is a perturbation parameter.

Using x in the last sense, one can expand f by perturbation theory; see for

example [6, pages 28-34] :
3

2. . o . 3
f=x - Efi—iﬁ/}") [sin(ms/A+ (8ns/W)]Ix + O

5

. 2 . 4 2 4
8= wn/A) + Ku(n/a) x + O

Qualitative approach.

The disadvantage of perturbation theory is that it tends to carry

us away from the conceptual point of view of regarding the compression force

g as the '"cause" and the shape f as the "affect' . What we really want to do

is to use the perturbation expansion to draw the graph G of f as a function of

8, as in Figure 4. (Alternatively we could use Thecorem 5 below to deduce the

oy

shape of G.) ? stable
unstable
— o—=0
()
stable
(n/ 2
o T/ x) i
; - >B

Figure 4. The graph G of shape f as a function of compression §.
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The graph is stably constant f = 0 up to the Euler buckling force, where
bifurcates parabolically at the point P into two stable branches, representir
buckling upwards and downwards, while f = 0 becormes an unstable branch

There are two technical difficulties about this graph: Ffirstly !
has a singularity at P, and secondly the space :‘; in which f lies (which w=
have drawn as 2-dimensional in Figure 4) is in fact =~dimensional. Catastrogi o
theory helps us to get rid of the first difficulty as follows. Observe that &
equivalent to the section a = O of the surface in Figure 2. Therefore If we
introduce a small vertical load a on the centre of the strut, then the p-axis
will be embedded in a 2-dimensional control plane C, with coordinates (a,B),
and G will be embedded in a smooth equilibrium surface M < C x 3[ s Such
that the projection M = C is a cusp catastrophe.

Meanwhile the second difficulty of w—dimensionality can be either

met or avoided; Chillingworth [1] shows how to meet it by embedding ? in a

Hilbert space, but here we shall avoid it, as follows. We capture the

gualitative behaviour by selecting the significant harmonic, which in this ¢
the first harmonic, and computing it to first order. To study the guantitakiyve
behaviour one could equally well compute a finite number of harmonics up to
the reguired accuracy. More precisely, let h:?m R be the function mapping
f to its first harmonic, h(f) = x. Then, although 1xh:CxF ~ CxR crushes
(2t=)-dimensions down onto 3-dimensions, it nevertheless does not crush the
equilibrium surface M that interests us, but embeds M smoothly into CxR,

enabling us to visualise it and compute it.

Lemma 4. 1xh maps a neighbourhood of P in M diffeormorphically into CxR.

Proof. Let p,q denote the two tangent lines to G at P. In Figure 3 p
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coincides with the line f = 0, and is horizontal parallel to the B-axis, while g is
tangent to the parabola, and vertical in the sense of being parallel to ? . By
the proof of Theorem 3 the derivative Dh maps q isomorphically onto R, and
hence D (1xh) maps the plane spanned by {p,al isomorphically into CxR. But
this is the tangent plane to M at P. Therefore 1xh maps a neighbourhood of
P in M diffeomorphically into CxR.

Let M' = (Ixh)M, P' = (1xh)P. Then we have a commutative

diagram

Corollary, The singularity of y at P is eguivalent to that of ' at P'.

Therefore to prove that M is a cusp catastrophe it suffices to show that M' is.
Thus we have avoided the s—dimensional problem, because we work with
M' ¢ CxR, which is 3-dimensional.

For convenience choose units so that the length of the strut,

A= 11, and the modulus of elasticity per unit length, p= 1/m. Then the Euler
buckling force = u = ¥/ Let g = (1+b)/m, and assume x,a,b are small.
Theorem 5. M is - astrophe with (—g) as normal factor ard g as
splitting factor words the Euler strut behaves exactly as the simple

Euler auwch i Theors anel Figure
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Proof, By Theorem 3, f = xsins + OB.

4 -1
. sENergy in strut =%‘fg u(f")2(1-(f')2) ds.

1 6
—Q?Jpxesinesﬁ +x200525)ds + 0

]

]

2(x2+3{x4) % 8"
because the other O4-ter*ms disappear in the integration,
Energy lost by compression = 'fB[" —JT—(f‘)‘?}ds

—gj'(xgcosgs + ‘4x4cos4s)ds +0°

]

4
H(14bYx" + %) + 0°,
Energy gained by load = a(x+03)

2
.. total energy, V = a‘[xét + q(xq—Os) - b(¥%x +CJ4) $00°

1

4 2
~8a X * oax - ¥bx

This completes the proof of Theorem 4.
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3. THE PINNED EULER STRUT

We now turn to a much more interesting property of the Euler
strut, namely its load bearing capacity and imperfection sensitivity, when the

ends are pinned as in Figure 5.

in the oinned Euler strut with an offset load the
ond harmoric y is significant.

Let r b= e FIESt mammonic wnen the stiuE is unloaded; ¢ is a constant related
to the difference between the length of the strut and the distance between the
pins. ‘We now apply a vertical load o off-set from the centre by a distance g,
as shown in Figure 5. We call the imperfection, because this model
sometimes simulates a manufacturing imperfection. The question is : when will
the strut snap catastrophically into the downwards position 2 This time the
second Harmontc will be the significant one, as shown in Figure 5.

A nice realisation in stone of Figure 5 can be seen in the western arch of

. ; = : . A o
Clare College biric e the river Cam, in which the keystone 1s about 10

to the wairtd

vo@s a funckion of {a,e) is a dual cusp catastrophe,

- spd {—a) as splitting Factoir:
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Figure 6. In the pinned Euler strut the second harmonic
y obeys a dual cusp catastrophe. The cusp K
illustrates the load carrying capacity and
imperfection sensitivity.

Remark 1. Here the word dual means that the middle sheet
represents stable equilibria, while the upper and lower sheets represent
unstable equilibria. We call g the normal factor, rather than {(-~g), because orn

the stable middle sheet vy increases with g.

Remark 2. Theorem 6 is a local statermment and therefore we
have only drawn the graph over a neighbourhood of the cusp point. In
particular the result does not extend to g = 0. We shall treat a = 0 in the

globalisation below.

Load carrying capacity. The cusp K in Figure & is the

bifurcation set., If the load a is gradually increased keeping the imperfection
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¢ fixed, as shown on the dotted path, then the stability of the upward position
of the strut breaks down when the path crosses K at the point B*, and the strut
will snap catastrophically into the downward position. The latter is represented
by another sheet of stable equilibria, which is not shown in Figure €, but is
explained in Figure 8 and Theorem 9 below.

The cusp K is therefore the graph in C of the load carrying
capacity o as a function of the imperfection ¢. The sharp reduction in load

earrying capacity away from the maximum %y by the %-power law of the cusp

Obviously this can be eritical in designing

wrs of high—tensile steel,

structuires = {1y | K N Ee e

and obtained accu ~onficmation of the cusp., Before
=

proving Theoram 3 we sute the masxiimum load.

~cond harmonic v are related by the

i

Lermma [

squation %+ 4y =

2 5
Proof. As before suppose A = 1, w= 1/m. We shall work to 0~, and ignore
higher harmonics. Therefore

f = xsins + ysin2s,

Distance betwesn pins = ;r'g\/’lv—(_f'gjcfs-

s 2
= (-4 xcoss + Bycos2s) )ds

i=s unloaded.

Lemmsz 2 hs TRESTRLTT Teed el
=S
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o 2
Proof. Energy in strut = %‘J u(f"y ds

2 2
¥(x~ + 16y )

]

2 2
%(r~ + 12y ), by Lemma 7.
Energy of load = af(n/2 + €)

L . 2
= g{x = 2ey), ignoring e

alr — EPL - 2gy), by Lemma 7.

24 2
constant — 2agy + (S—T)y

,°, total energy, WV

The cusp point occurs when V' = V" = 0, where prime denotes 3/ay.
3
Therefore ¢ = 0 and a = ~2: -

Proof of Theorem 6. We can either work locally with higher orders or

globally with order 2, and since both approaches shed light we shall do both,
First we work locally, and show that y satisfies a dual cusp catastrophe by
computing the coefficient of y in the expansion of V, and verifying that it is
negative. Since we are working near the cusp point we may assume y < I,
1 2 : ’ ;
Therefore we shall suppose r,x = O, y =0 , and ignore higher harmonics,

: 6 . .
Then working to order O gives a refinement of Lemma 7

z 2 <
xa + 4y + gx2y:2 = r‘2
2 2 4
o s s B i
i 4 3
g
2
. 13r 2
Energy in strut = constant + (3 + 8 poY

. ; A 2
Energy in load = a(x - 2ey), ignoring ¢

4
- 2. 8,2 2y
=alr-2ey -G+ W - rsl

13r2 2 3r 2 2&4
. « total energy = const - 2oey + [(3 + ) )—u(-F+ -E-)]y ———BL a
3 r
. g R,
%o B 4
Pu = +
t a 0‘.0 a
. 3 4 2 2
et T 2y —Sr‘gy—ray a

r
4 2 : :
~ =y + ey + ay ), absorbing the constants In the



387

variables. This is the potential of a dual cusp with normal factor g and

splitt'mg factor (=a), completing the proof of Theorem 6.

A simple constraint experiment.

We can obtain the shape of Figure 5 by holding a plastic or
cardboard strut between thumb and forefinger as shown in Figure 7(a), and

constraining it by pushing slowly down, off centre.

Y

S

Figure 7., (a) Experiment with a plastic or cardboard strut,
and (b) the resulting graph of load o and second
harmonic Y.

However this experiment 1S slightly different from that described by
Theorerm 6 because the push down is a constraint rather than a load. It is

true that the constraint will exert a downward load equal to the upward

resistance of the steut., which is exactly what is needed to keep it in
equilibriwin, DUL & narure of the stability changes @ for exarple an equiltbrium
point or tha uppar S of Figure 8, which sould be unstable with respect to

a fFixed lo = 1z with raspect Lo a constraint. Wa can test
this = ot ;
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Figure 7(b) shows the section of Figure 6 over the dotted path
through B* | extended back to o = 0. The black curve AB is the section of the
stable middle sheet, and the dotted curves BC, DE are the sections of the
unstable upper and lower sheets, The point A represents the initial
unloaded shape with maximum first harmonic and zero second harmonic. As
the strut is slowly pushed down it follows smoothly the curve AB; a steadily
increasing load is required, and the second harmonic grows noticeably. B is
the fold point over B*, and would be the point where strut would have
snapped into the downward position in the loading experiment of Theorem &,
But here we are constraining rather than loading, and the constraint does not
continue to exert the critical load B*; instead the actual load applied by the
constraint begins to decrease again, and the behaviour, instead of snapping,
continues to follow smoothly round the curve BC. The change in the nature of
the stability can be detected by observing that for points on AR a push down
increases the resistance of the strut, whereas for points on BC a push down
decreases the resistance. Eventually the point C is reached, which represents
maximum second harmonic and zero first harmonic; hare the resistance
changes sign, and so the constraint no longer constraing allowing the strut at

last to snap into the downward position,
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4, GLOBALISATION

The disadvantage of Theorem 6 is that it only gives a local
analysis near the cusp point. Similarly the disadvantage of Figure 6 is that
does not show the other sheet of stable equilibria, representing the strut in
the downward positions,x < 0. Although the cusp K tells us where the
catastrophic jumps will occur, and although the fold curves above tell us
where they jump from, we cannot see where they will jump to, because this
receiving sheet is missing. And indeed, were we to include the missing sheet
on l“—'igur*g 6, this would be even more confusing because it would intersect the
other sheets already there.

To clarify matters we must use the first harmonic as well as the
second. Let H be the plane with coordinates (x,y) representing both harmonics,
and let h:?- H denote the map f 1 (x,¥). We are interested in the equilibrium
surface M c cx¥ . The relation :'<2+4y,2 = r“2 of Lemma 7 determines an
ellipse E < H. Therefore the product map

1xm:CxF - CxH
maps M onto a surface M' inside the solid torus CxE. The questions we want
to answer are :

What is the geometry of M'?

How does M!' lie in CxE?

What is the singular set of the projection y':M' - C?

What is the bifurcation set, Bif y' = x'(Sing ¥')?

If we can show M! is smooth, then 1xh must have mapped M diffeomorphically

on to M', and so the commutative diagram

M0 ym

* ®



390

ensures that Bif = Bif y'. Therefore an anmalysis of M' will reveal the
x b

global catastrophe set, Bif y, that we are looking for.

Torgue.

The moment of the load a about the mid-point between the pins
is az. Define the torque 1 = %ae. (The factor % is included for technical -
convenience in the proof of Theorem 9 below) Locally Theorem 6 and
Figure 6 remain the same if the imperfection ¢ is replaced by the torque T,
because, for a bounded away from zero (as it is in Theorem 6),
the change of variable ¢ - 1 is a diffeornorphism and the cusp
catastrophe is invariant under diffeomorphism. Globally 7 is more convenient
than g, and so from now on we use t. Therefore the control plane C will
now have coordinates (a,T). In particular the control point o = 0, 7 # 0

means apply torque, without load, to the centre of the strut.

Construction.
We make a mysterious construction. Let j:H - C be the linear
isomorphism given by
a = =x/2
T =2y .
Recall that E is the ellipse ><2+4y2=r*2. Therefore JE is the ellipse 4g2+12=r'2.
Let W denote the ewvolute of jE, in other words the envelope of normals which
is the concave diamond with four cusps shown in Figure 8. Define the
normal bundle M" of JE to be the subset of CxjE given by
M"™ = {(c,e);c€C,e€jE, c lies on the normal at e}.

Now comes the surprise that justifies the construction.
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; K $v

| &

! ]

| E U1 s _— >

i
S x
= =
=z U .
2 e=jz=(E,n)

Figure 8. W is the evolute of jE. The harmonics of the
stable and unstable equilibria corresponding to
control point ¢ are given by the inverse images
51,52,U1,U2 of the feet of the normals from c to jE.

Theorem 9. 1xj:CxE - CxjE maps M' diffeomorphically onto M'".

Proof. Let z = (x,y) € H, ¢ = (a,T) € C. From the proof of Lemma 8, the

total energy

2 2
H(xTH18y ) + o(x—2ey)

<
i

1

%x2+4y2 + ax—47Y.

The surface M' c CxE is given by the stationary values of V with respect to
x,y, Subject to the constraint z € E. Lete= jz € C, and suppose e has
coordinates e = (E,m). Then

% = —2E

y =n/2.

2, 2
E +n —2aE-2TYy

<
1l

(g0 + () - @)

2 2 2
=§ =(a+1)
where § is the distance between the points c,e. The constraint becomes

e € jE. Therefore keeping c fixed and varying 2z,
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(c,z) € M' &=/ stationary, subject to z £ E
L2 § stationary. subject fto e £ jE
=== ¢ is the foot of a normal from ¢
f&=—=yc lies on the normal at e
E=r(c,2) € M"

Therefore 1xj maps M' to M", as required.

Problem. In the proof of Theorem 9 we used the second
order approximation for V, and therefore the result is not proved over the
whole of C, but only over an open subset U of C. However if r is small,
then U contains the ewvolute W, which is the set we are really concerned with.
It would be interesting to compute lower bounds for the size
of U in terms of r, The subtlety of the problem is that Theorem 9 is

strictly neither local or global, but semi-global.

Remark. The mysterious construction of j and the factor 7 oin

the definition of 7 were merely devices to identify the intrinsic

structure of the problem with that of the Euclidean plane.

voof M to that of

The evolute W. We have reduced the georme

M", which is well known. Topologically the normal bundle is a cylinder,
showing that the equilibrium states are connected, and contain an essential
cycle® ., Let e, denote the centre of curvature of jE at e. Then the
singular set of the projection y":M" - C is

Sing ¥" = {(ce,e):e € iE].

* Hence a stiffened elastic panel can become locked in a global buckling mode,
which cannot be localised and is difficult to push out, If you try to push it out
then it will tend to slide around. The only way to get rid of it is to hold down
the two second harmonics, and then press with sufficient force to call into play

the third harmonic.




Therefore the bifurcation set
Bif y' = {ce;e € JE] = the evolute, W.
Since the bifurcation sets of x,y'y" are all equal, we have achieved the desired

result :

Corollary. Bif y = W.

This answers a question of Sewell [4].

The evolute can be wiritten parametrically

B i 3r 2
(O 4N particular (-;,O) is the cusp

The four cusc points ars

point

Geometric interpretation. Not only does the evolute give us

the bifurcation set, in other words the loads and torques in C at which the
catastrophic jumps take place, but the map j also enables us to identify the
shapes of the strut, in other words the points in the harmonic plane H where
the jumps begin and end.

Consider a point ¢ in the interior of W, as in Figure 8. The
four tangents from ¢ to W are the same as the normals from c to JE. Let
j51 ,jSe,jl_.‘1 5 jl_lg be the feet of those normals, where S stands for stable
(the distance firom ¢ o iE being a 1ocal minirnum) and U stands for unstable

(when it is a local maximumj, Let 5_1 ,52,U ,UD denote their inverse images

1
under j. The latter poirts datermine the shapes of the stable

and urstabie equilibria of the strut, corresponding to controt <. For exarmple

Figure 5 lllust moint

S, with 3,y > 0.
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Now increase the load, @. As c crosses W the points 91 and
LJ1 coalesce, causing the stability of S1 to break down. Therefors the strur

snaps into position 52’ with x < 0, y > 0, as shown in Figure 9. Conversely

o
we can snap the strut up again by 51 bt S *
L L
~

y

smoothly changing the sign of g

until ¢ hits the left hand side of W,

and then return the strut smoothly
Figure 9. The snap 51 - SQ.

to its original position S1 by

increasing a again. Alternatively we could return the strut to S1 along an

entirely smooth path by making ¢ encircle the top cusp of W,

Note that when ¢ is at the top cusp the points S1 ,U1 ,52
coalesce, confirming that it is an ordinary cusp catastrophe, with an unstable
sheet in between two stables: similarly for the bottom cusp. Meanwhile when
¢ is at the right hand cusp the points u1 ,S1 ,U2 coalesce, confirming that it
is a dual cusp catastrophe, with a stable sheet in between two unstables, as
we proved in Theorem 6 and Figure 6. Similarly with the left hand cusp.
The global configuration is diffeomorphic to that of the catastrophe machine
in [10].

Sumrnarising, Figure 8 gives us a global cornprehension of both

the qualitative and the quantitative behawviour of the pinned Euler strut,
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