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INTRODUCTION.

These lecture notes are an attempt to give a minimal complete proof
of the classification theorem from first principles. All results which are not
standard theorems of differential topology are proved. The theorem is stated
in Chapter 1 in a form that is useful for applications [12].

The elementary catastrophes are certain singularities of smooth maps
R" ~ RS They arise generically from considering the stationary values of
r-dimensional families of functions on a manifold, or from considering the
fixed points of r-dimensional families of gradient dynamical systems on a
manifold. Therefore they are of central importance in the bifurcation theory
of ordinary differential equations. In particular the case r = 4 1is important
for applications parametrised by space-time.

The concept of elementary catastrophes, and the recognition of their
importance, is due to René Thom [10]. He realized as early as about 1963 that
they could be finitely classified for r = 4, by unfolding certain polynomial
germs (xa,xé,xs,x6,x3izy2,x2y+y4). Thom's sources of inspiration were four-
fold: Ffirstly Whitney's paper {11] on stable-singularities for r = 2, secondly

his own work extending these results to r > 2, thirdly light caustics, and

fourthly biological morphogenesis.

*Thig paper, giving a complete proof of Thom's classification theorem, seems
not to be readily available. In reeponse to many requests from conference
participants, Zeeman and his collaborator, David Trotman, agreed to make a
revised version of the paper (July, 1975) available for the conference
proceedings. I would like to exprese my appreciation to both Christopher
Zeeman and David Trotman.

Peter Hilton
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However although Thom had conjectured the classification, it was
some years before the conjecture could be proved, because several branches of
mathematics had to be developed in order to provide the necessary tools. Indeed
the greatest achievement of catastrophe theory to date is to have stimulated
these developments in mathematics, notably in the areas of bifurcation,
singularities, unfoldings and stratifications, In particular the heart of
the proof lies in the concept of unfoldings, which is due to Thom. The key
result is that two transversal unfoldings are isomorphic, and for this Thom
needed a C* version of the Weierstrass preparation theorem. He persuaded
Malgrange [3] to prove this around 1965. Since then several mathematicians,
notably Mather, have contributed to giving simpler alternative proofs [4,5,7,8]
andthe proof we give in Chapter 5 is mainly taken from [1].

The preparation theorem is a way of synthesising the analysis into
an algebraic tool; then with this algebraic tool it is possible to construct
the geometric diffeomorphism required to prove two unfoldings equivalent. The
first person to write down an explicit construction, and therefore a rigorous
proof of the classification theorem, was John Mather, in about 1967. The
essence of the proof is contained in his published papers [4,5] about more
general singularities. However the particular theorem that we need is somewhat
buried in these papers, and so in 1967 Mather wrote a delightful unpublished
manuscript [6] giving an explicit minimal proof of the classification of the
germs of functions that give rise to the elementary catastrophes. The basic
idea is to localise functions to germs, and then by determinacy reduce germs to
jets, thereby treducing the w-dimensional problem in analysis to a finite
dimensional problem in algebraic geometry. Regrettably Mather's manuscript
was never quite finished, ahtough copies of it have circulated widely. We base
Chapters 2, 3, 4, 6 primarily upon his exposition.

Mather's paper is confined to the local problem of classifying germs
of functions. To put the theory in a usable form for applications three

further steps are necessary. Firstly we need to globalise from germs back to
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functions again, in order to obtain an open-dense set of functions, that can
be used for modeling. For this we need the Thom transversality lemma, and
Chapter 8 is based on Levine's exposition [2].

Secondly we have to relate the function germs, as classified by
Mather, to the induced elementary catastrophes, which are needed for the

applications. For instance the elliptic umbilic starts as an unstable germ

Rz + R, which then unfolds to a stable-germ RZ x R3 + R x R3, or equivalently
to a germ f£: R2 x R3 + R, and eventually induces the elementary catastrophe
3 3

germ Xf: R™ > R°, The relation between these is explained in Chapter 7.
Finally in Chapter 9 we verify the stability of the elementary
catastrophes, in other words the stability of Xf under perturbations of £.
A word of warning here: although the elementary catastrophes are singularities,
and are stable, they are different from the classical stable-singularities
[1,2,4,5,11]. The unfolded germ is indeed a stable-singularity, but the induced
catastrophe germ may not be. The difference can be explained as follows. Let
M denote the space of all C* maps R' > Rr, and C the subspace of
catastrophe maps. Then C # M because not all maps can be induced by a
function. Therefore a stable-singularity, such as 22, may appear in M, but
not in C, and therefore will not occur as an elementary catastrophe. Conversely
an elementary catastrophe, such as an umbilic, may appear in C, and be stable
in C, but become unstable if perturbations in M are allowed, and therefore
will not occur as a stable-singularity. For r = 2 the two concepts
accidentally coincide, because Whitney [11] showed that the only two stable-
singularities were the fold and cusp, and these are the two elementary
catastrophes. However for r = 3 the concepts diverge, and for r = 4,
for instance, there are 6 stable-singularities and 7 elementary catastrophes,

as follows:
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stable~singularities elementary catastrophes

cuspoids

We are grateful to Mario De Oliveira and Peter Stefan for their

helpful comments: these have led to several corrections in the text.*

*As editor, I would algo like to express my gratitude to Sandra Smith for
adapting the original manuscript to a form suitable for the Lecture Notes, and
to Sarah Roserberg for her skillful reproduction of the diagrams.

Peter Hilton
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CHAPTER 1, STATING THOM's THEOREM,

Let f: R®™ xRT + R be a smooth function. Define Mf c BP+r to be given by
f 3f

65;—,..., = gradxf = 0, where Xy e-s X are coordinates for RP, and
1 n
Yqs -++» ¥, are coordinates for R', Generically Mf is an r-manifold because
it is codimension n, given by n equations. Let Xf: M; +R" be the map
n+

induced by the projection R T >R, We call Xf the catastrophe map of f£.
Let ¥ denote the space of C*-functions on Rp+r’ with the Whitney C*-topology.

We can now state Thom's theorem.

Theorem. If r =<5, there is an open dense set F, ¢ F which we call generic
functions., If f 1is generic, then

(1) Mf is an r-manifold.

(2) Any singularity of Xf is equivalent to one of a finite number of types

called elementary catastrophes.

(c) Xf is locally stable at all points of Mf with gespect to small
perturbations of £,
The number of elementary catastrophes depends only upon r, as
follows:
r 1 2 3 4 5 6 7
elem. cats. 1 2 5 7 11 »
Here equivalence means the following: two maps X: M + N and

X': M' > N' are equivalent if 3 diffeomorphisms h, k such that the

following diagram commutes:

M! N'
Xt

Now suppose the maps X, X' have singularities at x, x' respectively. Then

the singularities are equivalent if the above definition holds locally, with
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Remarks. The reason for keeping r =5 is that for r > 5 the classification
becomes infinite, because there are equivalence classes of singularities
depending upon a continuous parameter. One can obtain a finite classification
under topological equivalence, but for applications the smooth classification
in low dimensions is more important. The theorem remains true when RP+r is
replaced by a bundle over an arbitrary r-manifold, with fibre an arbitrary
n-manifold.

The theorem stated above is a classification theorem: we classify
the types of singularity that 'most' X_ can have. We find that if Xf has

£

n M, and if n is the germ at (x,y) of

a singularity at (x,y) € Rp+r

fh€5<y, then the equivalence class of Xf at (x,y) depends only upon the
(right) equivalence class of n (Theorem 7.8). This result is hard and
requires an application of the Malgrange Preparation Theorem, itself a
consequence of the Division Theorem (Chapter 5), and study of the category of
unfoldings of a2 germ n (Chapter 6).

To use it we have first to classify germs n of C® functions

RP,O + R,0. We use two related integer invariants, determinacy and codimension,

and the jacobian ideal A(n) (the ideal spanned by %£~3 . %ﬁ— in the
1 n

local ring E of germs at 0 of C  functions R° +R). The determinacy
of a germ n 1is the least integer k such that if any germ £ has the same
k-jet as n then £ 1is right equivalent to n. Theorem 2.9 gives necessary
and sufficient conditions for k-determinacy in terms of A. Defining the
codimension of n as the dimension of m/2, where m is the unique maximal
ideal of £, we use this theorem to show that detn- 2 < cod n in Lemma 3.1.
If r=5 and f €F, then if n = flR"y, for any ¥y € R", we have

codn= r. Hence since we can restrict to cod n =5 we need only look at
7-determined germs in the vector space J7 of 7-jets. We must restrict to
r=5, for if cod n = 7 there are equivalence classes depending upon a
continuous parameter, and the definition of F* ensures that if r = 6 then
each of these equivalence classes contains an fhfgty for some vy €R" and

£eF,.
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The 7-jets of codimension = 6 form a closed algebraic variety 2
in J7, and the partition by godimension of J7—Z forms a regular stratificatim
(Chapters 3 and 8). We in fact use a condition implied by a-regularity
(Definition 8.2). This is necessary to show that F, is open in F. That it
is dense follows from Thom's transversality lemma; and transversality gives
" that Mf is an r-manifold for £ € F, (Chapter 8).
The classification of germs of codimension = 5 is completed in

Chapter 4 and in Chapter 7 the connection is made with catastrophe germs.

Finally in Chapter 9 we show the local stability of Xf;

CHAPTER 2. DETERMINACY.

Definition. Suppose C*(M,Q) is the space of C* maps M —+ Q, where M and
Q are C™ manifolds. If x €M and f and g € C*(M,Q) let f~g if 3
a neighborhood N of x such that f|N = glN. The equivalence class [f] is
called a germ, the germ of f at x.

Let En be the set of germs at 0 of ¢ functions R+ R. It
is a real vector space of infinite dimension, and a ring with a 1, the 1
being the germ at 0 of the constant function taking the value 1 € R.
Addition, multiplication, and scalar multiplication are induced pointwise from

the structure in R.

Definition. A local ring 1s a commutative ring with a 1 with a unique

maximal ideal.
We shall show that En is a local ring with maximal ideal m
being the set of germs at 0 of C” functions vanishing at 0 (written as

functions m“,o +R,0).

Lemma 2.1. o is a maximal ideal of En.

Proof. Suppose n € En and n ¢ m . We claim that the ideal generated by L

and n, (mn,n)E , 1s equal to En.
n
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Let the function e ¢ n, {,e, n 1g the germat O of e, and choose
a nefighborhood U of 0 in r® such that e # 0 on U, Then 1l/e exists on
U. Let & be the germ [1/e], then &n = [1/e]*[e] = [1l/e*e] = (1] = 1.

Also En € (mn,n)En. Thus (rnn,n)En = En'

Lemma 2,2, m is the unique maximal ideal of En.

Proof. Given I g E, we claim I ¢ m . If not dn € T - ™, and then as in
n
Lemma 2.1 an inverse exists in En' 1=1/nn €I, and so I = En'

Lemma 2.1 and Lemma 2.2 show that En is a local ring.

Let Gn be the set of germs at 0 of C° diffeomorphisms Rn,O —>Rn,0.
Gn is a group with multiplication induced by composition. We shall dropsuffices
and use E, m and G, when referring to En’ m and Gn rather than Es

when n # s, etc. Given « cees O € E, we let (al,...,ar)E be the ideal

1’
r
generated by {di} = {illsiai: e, € E}, and drop the suffix if there is no risk
of confusion. Choose coordinates Xys wees X in R" (linear or curvilinear).

The symbol 'xi' will be used ambiguously as:
(i) coordinate of x = (xl,...,xn), Xy €R,
(i1) funetion x,: E",0 +R,0.
i
(1ii) the germ at 0 of this function in m € E,

(iv) the k-jet of that germ (see below).

Lemma 2.3. m = (xl,...,xn)E

ideal of E generated by the germs X,

Proof. Given n € m, represent n by e: RH,O —>R,0. Y x GRH,

= [123e
e(x) fo so (tx)de

1 9 3e

= f I — (tx)x, (x)dt
0 i=1 axi i

= 3

= i=1ei(X)xi(X)-

_ 2 £ 3 c
e = 1§161xi as functions and so n = 1£1eixi as germs, Thus m (xl,...,xn).

c
(xl,...,xn) m because each X, € m,
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Corollary 2.4. mk is the ideal generated by all monomials in X, of degree
Corollary 2.5. mk is a finitely generated E-module.
We let Jk be the quotient E/mk+1, and let Jk be m/mk+1. jk

denotes the canonical projection E -+ 7k,

Lerma 2.6. Jk is 1) a local ring with maximal ideal Jk,

2) a finite-dimensional real vector space (generated by

monomials in {xi}, of degree = k).

Proof. 1) Jk is a quotient ring of E and thus is a commutative ring

with a 1. There is a 1-1 correspondence between ideals:

E E/mk+1=Jk
U U
I «——> ]Z/mk+l
U
k+1
m

so T is a local ring.
2) Jk is a quotient vector space of E and is finite-dimensional.

For given n € E, the Taylor expansion at 0 is,

n= no + nl + ...+ nk + pk+1,

k.

where nj is a homogeneous polynomial in {Xi} of degree j, with coefficients

the corresponding partial derivatives at 0, and Pt € mk+l'

Definition. The k-jet of n = jkn =N, + ...+ M

Taylor series cut off at k.

Jk and Jk are spaces of k-jets, or jet spaces.

Definition. If n, £ € E we say they are right equivalent (~) if they belong

to the same G-orbit. n~ & e 3y € G such that n = £y.
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Definition. If n, £ € E we say they are k-equivalent (,lf,) if they have

k

the same k-jet. n }5 Eejm-= jkE-

Definition. n € E is k-determinate if V& € E, n '15 E=mnan E. Clearly n

k-determinate = n i-determinate Yi = k. The determinacy of n 1is the least

k such that n is k-determinate. We write det n.

Lemma 2.7. If n is k-determinate then
1) n X £ = £ k-determinate,
2) n~E=E k-—detérmj.nate.

Proof. 1) follows at once from 2), which we shall prove. Assume n ~§&,

i.e. n= Eyl, some vy € G. Suppose ¢§ ,1f, v, i.e. jkE = jkv, i.e.

k, -1 .k
37y =37y
k ko -1 koo -1, Lk koLk .k
Then J™n = 37(ny;7vy) = 3 ()3 () = 3 v-37yy = 3 (v, So
k .
n e~ le, which = n ~ vYys i.e. n = VY Y, some Y, € G. Then Eyl = VY Ygs

and £ = vylyzyil, i.e. £ ~v. 8o 2) is proved.

Definition. If n € E, choose coordinates {xi} for Rn, and let

A =A(n) = (:%,...,%)E. A is independent of the choice of coordinates. For
1
n 3x
if Ax=§% andA=(gL,-gl-= %—La—iGA andsoACAx.
1 y . Yj Yj i=1 ¥y Yj y
an_ 9% ; c _
(3xi € Bs each i, and ,ayj € E, each 1, j). Similarly Ax Ay, so Ax Ay.

Lemma 2.8. If n € E-m, and n' =n - n(0) € m, then A(n) = A(n"), and n
is k-determinate ¢ n' is k-determinate.

Proof. A(n) = A(n') 4is trivial. n E Ee(n' E g', trivially.

n(0) = £(0).
Also n=¢y e (n' =¢t'y, y €6
3n(0) = £(0).
Thus n~ @ n' ~E'
gn(O) = £(0).

So from now on we shall suppose n € m.
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Theorem 2.9. If n€m and A = A(n), then

+ 4
mk 1 < mzA = n 1s k~determinate = mk 1. wA.

Proof. We shall use the following form of Nakayama's Lemma:

Lemma 2.10. If A is a local ring, a its maximal ideal, and M, N are
A-modules (contained in some larger A~module) with M finitely generated over
A, then M C N+daM =M cC N.

1

Sublemma. X €A, A £ a= A~ €A,

Proof. XA is an ideal ¢ a. So M =A 31, 3u such that ip = 1.

Proof of Lemma 2.10. We shall first prove the special case of N =0, i.e.,

MCcCaM=M=0, Let v € aM by hypothesis,

12 e vr generate M, vi
I O .€a)
so V.= .V, ..
i4=114j3 ij
r
or 'El(éij —}‘ij)vj =0, i.e. (I-A)v = 0, where A is an (rxr)-matrix
j=
(Aij), and v =/v)\. The determinant |[I-A| =1+ A, some X € a. Now

v
r

1+Xx £ a else 1 €aand a=4& . So (1+A)—l exists by the sublemma. Then
(I—/\)_l exists, giving v=0 and M = 0,

To prove the gemeral case consider the quotient by N, (M+N)/N ¢ N/N +
(aM+N)/N. We claim the R.H.S. =a(M#N)/N. (*) Then by the special case,
(MN) /N = 0, giving MC N. Q.E.D.

The A-module structure on (M+N)/N is induced by that on M + N
by A(v#N) = Av + N,

a(M+N) /N

{A(v#N): X € g, v € M}

= {Av#N: X € a, v € M}

(aM+N) /N, proving (*).

Continuing the proof of Theorem 2.9, we assume mk+l C mzA, and must show that

n '151 £ =n. &E. The idea of the proof is to change n inte & continuously
with the assumption n ,1f, £. Let ¢ denote the germ at 0 xR of a function

' xR +R given by ¢(x,t) = (I-t)n(x) + t&(x), x €]Rn, t €R. Let
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o5 (x) = 8(x,t) = (n(x) t =0
{E(x) t=1.

Lemma 1. Fixing t;, 0 =t, =1, 3 a family I'* € G defined for t in a

O’
neighborhood of ty in R such that 1) rto = identity

t
2) ot =99,

Lemma 1 will give ‘n ~ £: Using compactness and connectedness of [0,1],
cover by a finite number of neighborhoods as in Lemma 1, then pick {ti} in
the overlaps, and construct y satisfying n = £y by a finite composition of

t
{T i}, i.e. n =0 o ~<1>1=€.

Lemma 2. For O = ] <=1, 3 agerm I at (p,to) of C° maps R? xR - R"
satisfying (a) I‘(X,to) = X,
() T(,t) =0,
() e(T(x,t),t) = 2(x,t ),
for all (x,t) in some neighborhood of (O,to).
Lemma 2 will give Lemma 1: Define Ft(x) = I'(x,t) from a neighbor-

t

% to R%; T is a germ of C® maps R ,0 >R%,0 by (b);

hood of 0 in R

I‘t‘o is the identity by (a). C° diffeomorphisms are open in the space of C®
maps RD,O —'Rn,O (because they correspond to maps with Jacobian of maximal
rank, i.e. to the non-vanishing of a certain determinant), and so 3 a
neighborhood of to such that I‘t is a germ of diffeomorphisms for t in that
neighborhood, 1i.e. rt eG.

Lemma 3. (c¢) in Lemma 2 is equivalent to,

T
" 11211 ¥ (ree,0,0 52 o0 + Boen,0 - o.
= 1

(¢) = (c¢"): by differentiation with respect to t.

) = (@: 0= (")t = 8(r(x,0),t) = o (M (x,t ) t.)

t
[+]

= §(I(x,t),t) = @(x,to) by (a) in Lemma 2.

Thus we have (¢).

Lemma 4. For Ostoil, 3 agerm Y at (O,CO) of a C° map R® xR -+ R"
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satisfying (d) ¥(0,t) =

(e) (x, t)‘i‘ (x,t) + — (x t) =0,

1=1 Bx
for all (x,t) in some neighborhood of (O,to).

Lemma 4 = Lemmas 3 and 2: The existence theorem for ordinary
differential equations gives a solution T[(x,t) of %% = ¥(r,t), with initial
condition I‘(x,to) =x (i.e. (a) of Lemma 2). In (e) put x = I'(x,t) to give
(¢'). (d) =T =0 is a solution, i.e. T(0,t) = 0 for all t in some
neighborhood of t, which is (b).

Let A denote the ring of germs at (O,to) of C* functions

R® xR +R. Projection R" xR > R? induces an embedding E ¢ A by composition.
3¢ 3%

Let @ = (E}_{—"“’BT)A'
1 n
Lemma 5. mk-'-1 = mZA = mk+1 C mZQ.
Lemma 5 = Lemma 4 as follows:
8¢ _ . _ k+1 k
T E-n€m (nX¢g)
C mZSZ.
Thus 2 Ip,w,, u, € m2 w, €Q (finite sum)
N I e T
[ 3d
=1 8. T . = A .
5 uJaiJ axi’ where mJ iaiJ axi, aij €A
_ 3¢
= E‘{li axi, setting \i’i —zu aij

This gives (e).
Now ”j = uj(x) and aij = aij(x,t). v ={‘¥i} is a germ at (O,to)

of a map r" XR+R“, and ‘l’i(o,t) = Q0 as each uj(O) = 0, so (d) holds for Y.

Proof of Lemma 5. (and hence the completion of the proof of a sufficient

condition for k-determinacy)

b oan
= + (€-n)
axi axi Bxi
€ Ay pgk (t €A, £ -n €t
Bxi
i.e. D—Gaq) +Am CQ+Am.
X 9x

i i
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So AcCcQ+ Amk.

Denote the maximal ideal of A by &, i.e. those germs vanishing at

(G,to). Then m C . Now Amk+l C Am2 (hypothesis)
C Amz(Q+Amk)
= wlo+ Amk+2
C mZQ + aAmk+1.
Now apply Nakayama's Lemma 2.10 for A, @, M, N where M = Amk+l is finitely

generated by monomials in {xi} of degree k + 1 by Corollary 2.4, and

N = mzﬂ. This gives Amk+1 c m2 Q. 1In particular mk+l = mzﬂ, completing

Lemma 5.
k+1
Now we prove that m C mA 1is a necessary condition of k-determinacy.
3 a natural map m L e LAy

k+1 .k
ne—rji ne=> jn

Let P = {f € m: n E £}, and Q = {€ € m: n ~ £} = orbit nG.

Assuming that n is k-determinate then P C Q, so that 7P < 7Q. (*)

P=n+ mk+l, so TP = z + mk+1/mk+2 =z + nmk+1. (Letting z = jk+1n

tangent plane to 7P at 2z, Tz(nP) = ﬂmk+1.

). The

Let ¢« denote the k-jets of germs belonging to G; GX is a finite-

dimensional Lie group. Now jk+l(nv) = jk+1(n)jk+l(7) for vy €G, i.e. 7 is

Gk+1. Gk+1,

equivariant with respect to G, So 1Q = w(nG) = z an orbit under

a Lie group, and hence is a manifold. In particular TZ(HQ) exists.

Lemma 2.11. Tz(nQ) = n(mA).

Now (*) gives Tz(nP) CTZ(nQ). Then Lemma 2.11 gives wmk+l C n(md),
i.e. mk+1 < mA + mk+2. Apply Nakayama's Lemma 2.10 with A =E, a=m,

M= mk+1, N = mA, using Lemmas 2.1, 2.2 and Corollary 2.4, to yield mk+l C mA,

Proof (of 2.11). Suppose y € G. As B  is additive we can write y =1+ ¢,

where 1 is the germ of the identity map, and § 4s the germ at 0 of a c®

map BP,O *-BF,O. Join 1 to ¥y by a continuous path of map-germs, Yt = 1 + té,
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0

A

are open in the space of C maps, and so 3 to > 0 such that Yt € G,

o=t=t.
[

Then {Yt} is a path in G starting at 1,
{nyt} is a path in Q starting at n,
{WnYt} is a path in %Q starting at z.

The tangent to the path at t = 0 is given by

d t _ 4
T M) o = g Tl(l+t6)\ ]
t t=0
ny

Now & = (61,...,6n) where §, is a germ of a C™ function Rn,O +R,0.

i

(Remember m is a ring and a vector space so we can define differentiation).

d t _ o 3jn
So 3% (mny )t=0 = "['El 5;; (1+t8) Gi t=0]
_ oo38n .
- "[igl X, 6i]
i
on
€ m@m). (8, €m, —axieA).

This tangent is in Tz(ﬁQ); moreover any tangent in TZ(nQ) arises from a

Gk+1

path in ©Q, so from a path in , so from a path in G starting at 1.

Allowing & to vary im G gives all such paths. Hence Tz(ﬂQ) C m(md).

n
Given £ € mA, we can write £ = I 33—~6 s, 6, €m., The ¢ assemble into
i=1 axi i i i

determining a path in G.

Hence m(mA) € Tz(ﬂQ), and we have TZ(WQ) = w(mA).

Corollary 2.12. n 1is finitely determinate < mk C A, some k.,

k+1

' follows as n k-determinate = m C mA C A,

Proof. '=

' k k+2

'«'e m CA, s0 m c mzA, and n 1s (k+l)-determinate.

Corollary 2.13. n €m - m2 = n 1is l-determinate.

Proof. n'(0) # 0, 1.e. some 23—-{ m, so A =E.

Ix
2 2 i

mA=m and then n 1s l-determinate by Theorem 2.9.

So we may effectively assume n € m2 from now on.

t=1. Whem t=0 or 1, yt is a diffeomorphism-germ. Diffeomorphisms

§



279

Definition. With chosen coordinates {xi},the essence of n (with respect to
this coordinate system) is the least k for which jkn contains all the X .

We write ess n.

Corollary 2.14. det n = ess n (with respect to any coordinate system),

Proof. k < essn = jkn does not contain X;, some i, Let & = jkn as a
germ. So A(E)? any power of Xy,
? mk, Vk.

Thus & 1is not finitely determinate (Corollary 2.12), But n 5 £, so if n
were k-~determinate, Lemma 2.7 would give a contradiction, i.e. k < det n.

Counterexample 1. Let n = xk+1, n=1, Then A = (xk) = mk, and mA = mk+l.

Det n = ess n = k + 1, (Coroliary 2.14). n is not k~determinate and so the

implication, n k-determinate = mk+l C mA in Theorem 2.9 is not reversible.

3
Counterexample 2, D, Siersma found n = §§-+ xy3, n=2, Here A= (x2+y3,xy2).

2 2 2 2 2 2 23 4
m” = (x7,xy,y7), so mA=x4+xﬂ>3,x3y+>yf, xzy +y5, x3y,xy,xy,

”
E NB T+ xys, Xy"’ + y6, xzyl‘, x3y3, xl‘yz, xsy, x6,

p) m6 ( 5-determinate)

Py, t w.

Det n = ess n = 4. By computation it is 4-determinate, and so the implication

+
mk 1 c mzA = n k-determinate is not reversible.

CHAPTER 3. CODIMENSION.

Remember that we work in m2 using Corollary 2.13.

Definition. The codimension of n = dimp m/A(n). We write cod n. The

definition makes sense because if n € mz, each %2—»€ m and so A4(n) € m,
i

If n were in m - m2, A(n) = E and by convention cod n = 0.

Lemma 3.1, Either both cod n and det n are infinite, or both are finite

and det n -2 =cod n.
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2
Proof. N €m =ACm, (A= A(n))

We have a descending sequence of vector subspaces of m,

m=m+AD> m2 +AD m3 +AD .0 mk +AD> ... (3.2)

Either (1) 3 k such that mk_l + A = mk + A, and k is the least such, or

(ii) 2 such a k.

k-1 k

Case (1): m Cm + A, and we may apply Nakayama's Lemma 2,10 yielding
mk—l C A, s6 mk+1 = m2 A. By Theorem 2.9 n is k-determinate, so det n =k,
i.e. det n is finite. Now cod n = dim m/A < dim m/mk_l, and m/mk—l is

finitely generated, by monomials in {xi} of degree 2 1 and < k - 1, So

cod n is finite. Now mk_l + A = A, and so the above sequence (3.2) descends

strictly to the mk—l + A term, and we have,

w/b 3 (m2+8) /A 2.3 @ Leay /8 = 0

<-—————— k-2 stepg —— >
Hence cod n = dimm/A =2 k - 2 = det n - 2, as required.

Case (ii): If det n is finite, then mk ¢ A for some k (Corollary 2.12).

Then mk + A=A= mk+1 + A, and we are in Case (i). So det n is infinite.

m/A > (m2+A)/A O ... 1is a strictly decreasing sequence and so cod n
(= dim m/A) is infinity.

Let Tc ={n € m2: cod n = ¢} (a 'c-stratum' of m2), and let
Qc = {n € mz: cod n = ¢ , and Zc = {n € m2: cod n = ¢}, so that

2 -
m" = FO U Fl U F2 U... U rc u...u r.. (disjoint union)

Let Fk, Qk, Eg be the images of FC, QC, Zc under the map w: m2 - Ik

¢’ ¢
0r=jk|m2), where Ik is defined as m2 mk+1 just as Jk is m/mk+1.

Theorem 3.3. If 0 =<¢ <k - 2, then - QE U EE+1 (disjoint union), and
k

Zc+1 is a (closed) real algebraic variety.

Remark. Both statements are false for c¢ > k - 2.

k+1 (nt+k)!

Lemma 3.4. Dim E/m = TR Yn, k=0.
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Proof, If n=0,E=R, m=0; L.H.S. =1=R.H.S. Yk, If k=0, E/m =R;
L.H.S. = 1 = R.H.S. ¥V n. Use induction on n + k.

Then E/mk+1 = polynomials of degree =k 1in Xys eees X

= (polynomials of degree k in Xys coes xn—l)

+ X (polynomials of degree k - 1 in Xy aees xn)

k+l _ (nt+k-1)! (n+k-1)!
So dim E/m = k) Tk + AT (by induction)

_ (n+k)!
" “alk!
Proof of Theorem 3.3. We define an invariant 1(z) for 2z € Ik = mz/mk+1.

Choose n € n_lz. n € mz, so A(n) = A Cm, Define 1t(z) = dim m/(A+mk).

We claim that t(z) is independent of the choice of n. Let n' be another

1
choice, A(n') = A'. Then n - n' € mk+1, so %ﬁ—-— %ﬁ— € mk, and
an k K k1 i
WGA'+m. Hence ACA'+m and A+m €A +m,
i

A+ mk C A+ mk by symmetry.
Hence A + mk = A" + mk and 1t(z) 1is well defined.

We claim that,

(1) 1(z) =ec=codn=1(z), so z € QE.
3.5 {

(i1) 1(z) > ¢ =cod n > ¢, so z € X§+l' (cod n perhaps # 1(z))

Because (i) and (ii) are disjoint, Ik is the disjoint union of QE and ZE+1,
once we have shown (1) and (ii) hold.

We have

(Lemma 3.4)
Note that 1(z) is finite,

although cod n may be infinite.
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Case (ii): cod n = 1(z) (from the diagram } Thus (ii) holds,
> ¢ (hypothesis of (ii))
Case (1): k -2z ¢ (hypothesos of the theorem)

> 1(z) (hypothesis of (i))
We have a sequence,

0=1:11/m=1'n/A+m<-—m/A+m2<-—...<—-——|J1/A+mk

k-1 stepg ——M8M8M8M8Mm——>
k . i-1 i
dim m/A + m, so one step must collapse, i.e. A+ m =A+m,

for some 1 =<k, i.e. il A+ m'. Nakayama's Lemma 2.10 = (ka‘)mi—1 C

k-22=1(z)
A,
Therefore A + mk = A, and so «k(z) = 0 where k(z) = dim (A-an)/A as in the

diagram. We observe that 1(z) = cod n, and so (i) holds.

n+k-1)! .
Now o(z) = t(x'(—k-lg—'_ -1 - t(z), from the diagram. If 1(z) > ¢, then
~1)!
c(z) < (ntk-1)! _ 1 -c =K, say. Zk = {z € Ik: cod n > ¢}

n! (k-1)! ct+l

{zEIk: ‘r(z)‘>c} (c =k -2)

{z € Ik: o(z) < K}, which we shall

show is an algebraic variety (real).

If Xjs eees X 2T coordinates for Rn, let the monomials of

degree =< k in {xi} be {Xj} as below:

_ (ntk)!
X X X3 X X Xs o0 % Gty
1
2 k
1 %y x2 Xn x1 X%, . xn

Now Jk is the space of polynomials in {xi} of degree =k with coefficlents

I ,a.X, (a, €R).
j=n+2 J ] ( J
Because 3z is a polynomial of degree k - 1 with no constant term it belongs

Bxi z
k-1 2 _ 3 a.x., (F = {mtk-D!

in R and no constant term. 2z € Ik can be written 2z =

to J sy SO T— N
axi jziJJ

multiplied by some a .

), where each a

AT is an integer

i3

k
Just as A is the ideal of E generated by {%}, so (Lrhnk)/m
i

Zy,
ky , k i k-1
basis X?_’ saey XB' (Am ) /m is now the vector subspace of J spanned by

is the ideal of Jk_l generated by { Now J  as a vector space has a
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™1

3z 3z

— X . L — = . .
{axi j} et each x, Xj kﬁzaij,kxk’ where each a5k is some an
We put M = the matrix {a )

ij,k

= the coordinates of vectors spanning (A+mk)/mk.
Now o(z) < K & dim (A+mk)/mk <K
e rank of M < K

« a3ll K-minors of M wvanish.

And so Zk is given by polynomials in the {a,, ,}, k.e. by polynomials in
ctl ij,k

the {ai}, each ay € R. Hence Ek is a real algebraic variety in the real

ct+l
vector space Ik of dimension iﬁ%%%i -n -1, itself a subspace of Jk
which is (iﬁ%%%l - 1)~dimensional.
Corollary. 1 is the disjoint union Fg U F? u...u Pﬁ_z u Zi—l’ and each
F§ is the difference Zt - Z§+l between 2 algebraic varieties.

Recall that the map w: m2 > Ik is equivariant with respect to G, Gk;
n — z
also the image of the orbit nG 1is sz, a submanifold of Ik, as in the proof
of Theorem 2.9.
Theorem 3.7. Let n € mz and cod n=c¢ where 0 =<c =k - 2. Then sz is
a submanifold of Ik of codimension c.

Proof. By Lemma 2.11, Tz(sz) = 1(mA). (a = A(n))

By Lemma 3.1, det n - 2=<codn=-c =<k~ 2, by the hypotheses. So det n = k,
k+1

1. e. n 1is k~determinate. By Theorem 2.9, m C mA,
The codimension of sz in Ik = dim Ik - dim w(mA)
= dim m2/mk+1 - dim mA/mk+l
= dim mz/mA.

Now m/mA = m/m2 + mz/mA, so dim mz/mA = dim m/mA - dim m/mz. So the

codimension of sz in Ik = dim m/mA - dim m/m2

dim m/A + dim A/mA - dim m/m2

= c + b1 - n N
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using the following lemma,

Lemma 3.8. If n € m2 and cod n < », then dim A/mA = n,

This completes the proof of the theorem,

Proof of Lemma 3,8. Since A is the ideal of E generated by {%-:—}, every
i

n an
_ = €
£ € A can be written as &£ iﬁlai axi where oy €E, ay a; + By, Wy €m,
n
a; €R. Then ¢ = izlai %mod mA. So {—2—:—} span A over R, mod mA, and
= i i

dim A/mA = n. It remains to prove dim A/mA = n.
Suppose not, i.e. that dim A/mA < n. Then {g;':—} are linearly

dependent mod mA. 3 15 -ees @) € R, not all zero, such that

le n T em {u,} €

a, —— = B, =— € mh, some {u m.

§=1 1 Bxi j=1 1 Qxi ’ i

’I’henX=;Zl(a~)aL=0 h X=§‘,‘(-—)3—i ector field
n Z1 My 3"1 where i a -y 3x1 s a vec

on a neighborhood of 0 in R®. X 1is nonzero at 0 because {ui} €m and

so vanish at 0 and {a,} are not all zero.

i
Change local coordinates so that X = —27- where {yi} are the new
1
coordinates. Then n 0. So n=n(yv,,...,¥.). Ess n = with respect
ayl 2’ n

to {yi}. But det n > ess n, by Corollary 2.14, By Lemma 3.1., codn= =, ,
We have shown that dim A/mA = n.
Theorem 3.7 justifies the notation cod n, as an abbreviation for

codimension.
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CHAPTER 4, CLASSIFICATION

Key: 22! means orbit is in XZ

@ round a polynomial 2z

signifies its orbit zG7.
+ means + and - give 2
S X
& distinct orbits
<
€, 2 2 2
= : ~ Xl - —ee e .
I7-1¢ >0 Qp {n:n kS +xcr Xot+1 xp}
co~-D at top = codimension of
C.—\— stratum in I7.
o\
o\
W co-D at bottom = codimension of
TS
-1 + Q stratum in J7.
C o Orbits involving one essential
)
& variable are called cuspoids,
5
I"'I 4 e.g. X .
Orbits involving two
__ essential variables are
Iq_Is + 20l called umbilics,
e.g. x3+y4.
IZ_IZ
»-0
Nartt /
slable
sll\Jvqu;Jl;ts
J-o
jo«lqr 7
oebid.
o

Diagram 4.1. Classification of I7 {and J7).
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This chapter will complete the above classification of 17 as in

Diagram 4.1, Supposing we already have our classification it follows that:

Theorem 4,2, In 17 - ZZ there are exactly 16mn - 7 orbits under G7.

Proof. We merely add the orbits in Diagram 4.1.
Stable singularities n + 1
Cuspoids n
Umbilics 8{(n -1)

I6n-7_

Corollary 4.3. If 0 =<¢ =35, FZ is a submanifold of I7 of codimension c.

Proof. FZ is the union of a finite number of orbits by Theorem 4.2, By
Theorem 3.7, each of these is a submanifold of codimension c.
We note that our classification also gives that Zg is the union

of a finite number of parts each of codimension = 6 in 17. (See Diagram 4.1)

7 _ .7 7 7 7 7 7 7 . 7
Theorem 4.4, I = To U rl u F2 V] Y3 8] Fh u T5 U T6 (disjoint) and each Fc
7
is of codimension ¢ in I7 and I is of codimension 6 in 17.

6

We shall now proceed with the classification.

1 2 n .

Lemma 4.5. Let 7:m~> J =m/m ®R, where 7 = j
the orbit of regular germs.

Proof. Given n € m, if jln # 0, then n = n, + higher terms, where n is

1 1
a nonzero linear term. Then A = £, as in Lemma 2.2. mzA = m2 and by
n
Theorem 2.9, n 1is l-determinate. So n ~ ny = iE_laixi = yj for some

linear change of coordinates, Thus n ~ x

1 by the linear map sending yj to

x., and n € orbit of x_, which as a function is regular,

1 1

These regular germs are precisely those with no singularity, or
rather are not singularities., We observe that J7 = Jl x J7/J1. Lemma 4,5
tells us that (.]1—0) x J7/Jl is the regular orbit, The remainder,
0xJ /I =m/m = 17, are the irregular orbits which we must classify.

n € m2 = n = q + higher terms, where q 1is a quadratic form in
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{xi}, say

q(xl,...,xn) = g} aijxixj ( = aji)

asy
Write A for the matrix (aij), which is symmetric, and define rank n, the

Hermitian rank of n or of jkn (k= 2) tobe rank A. Then O = rank n = n.

Lemma 4.6. Let rank n = p. By an elementary theorem of linear algebra there

1s a linear change of coordinates such that q = yi + y% + ...+ yg - y§+l-...-xf.

Corollary 4.7. n m:(xi + ... —'xz) + higher terms, if rank n = p.

Let Qp = {q: Hermitian rank of q = p}, in 12 = m2/m3 which is

R%n(n+1)

diffeomorphic to because it is the linear space of all quadratic

. 2 _
forms with coordinates {aij}’ i =3. Then I"=0Q U Q1 u...u Q-

Lemma 4.8. Q is a submanifold of 12 of codimension XA(A+1).

-2
Proof. Each Qp is a submanifold because each component is an orbit under
the action of the general linear group.
Choose q € Qp. By Lemma 4.6. we may assume that q = xi + ... - xg.
Then the associated matrix is <f~ O> , where E = /1 0 Suppose q'
9 2/ (o=nn) 0 -1
has matrix <A B'). 3 a neighborhood N of q in 1% such that if

B' G
[

q' € N, then |A| # 0. There rank q' = rank <A B>

[}

[ad

8

=

PN

b >
p’l
=

- (=)

~——

TN

] >

a 4

~—

]
"
8
=2
-
>
w

0o c-p'a"lB

Thus rank q' =p © C = B'a”t

B, i.e. the entries of C are determined by the
entries of A and B. Then Qp N N only has the freedom of the entries of

A and B.
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So the codimension of Qo = Qn—l is %\(A+1), which is the number
of free entries in symmetric C.

Now I7 = 12 x m3/m8 = (Qn x m3/m8) u {(Qp x ms/me)}p<n. Qn x m3/m8
is the union of orbits of stable singularities (studied in Morse theory) and by
Lemma 4.8. is an open set in I7. It is in fact Tg (clear).

Suppose now that rank n = p and that as in Lemma 4.6. we have
chosen coordinates x

xn so that n = x2 + .. = xz + higher terms.

10t 1
We call Xps e xp the dummy variables and xp+1’ cees X the essential

variables. The following lemma justifies these terms.

Lemma 4.9. (Reduction Lemma) Let n € m2 and j2n =q = xi b xz.

Then Yk, 3n' € m2 such that n ~ n', and jkn' =q + p(xp+l""’xn) where p
is a polynomial in only the essential variables with 3 = degree of monomials

of p = k.

Proof. Use induction on k. The lemma is true for k = 2. Suppose it is true
k
for k-=1. In I, yn'=q+pkx +l,...,xn) + nk(xl,...,xn), where

3 =degree of monomials of p =<k - 1, and is homogeneous of degree k.

e

Write n, = 2x.P (all terms containing X33 P

K 1F1 a homogeneous polynomial

1
in Xps eees X of degree k - 1)

+ 2x2P2 (all terms containing Xy, not xl)

+ 2x3P3 (all terms containing Xqs not x;, x2)

+ .. -2

x0+lP0+1 - .. = 2xpPp

+

pl(xp+l""’xn) (all terms not containing dummy variables).

i i

First incorporate the 2's and -'s into the {Pi}. Then let Y= (% *+P i<p
{ X

1 i>p

If 1 =p, yi = (xi-i-Pi)2 = x2 + 2x1P1 because monomials of degree > k vanish

i
tn 1F Sojn‘=y2+ —y2+p(y y )+ p.(y )
: 1 Tt p p+1’ " 7n 1V p41s ¢o+> Yn/

completing the lemma.

Addendum 4.10. The function n ~—— p is well-defined because the construction

is explicit.



289

Lemma 4.11., If rank n>n - 3, then cod n = 6.

Proof. Either n 1is not finitely determinate, in which case cod n = =,
(Lemma 3.1), or n 1is k-determinate, some k, f.e. n ~ jkn, and jkn ~gq+t
p (essentials), by Lemma 4.9. Then cod n = cod (q+p). A(gtp) =

3p 3p
(2K, 30 003=2X ym——yeus, ).
1 p 3xo+l axn

dim m/4(q+p)

So cod n

dim m/ (A(q+p)+m3)

v

1

number of the missing linear and quadratic terms in the essentials.
If n-rank n = A, all X 1linear terms are missing, as too are at least all
but A of the X\A(A+l) quadratic terms, So cod n 2 A + B (A+l) - A= %A (A41).
If rank n =n -3, then A =23 and cod n = 6.

We have that U (Qp ><m3/mg} consists of n with cod n = 6.
By Lemma 4.8., this subs::2;3has codimension 6 in I7. It remains to

investigate Qn—l x m3/m8 and Qn_2 x m3/m8.

Lemma 4.12. (Classifying cuspoids) If rank n=n -1, then n~q + xi,

3=k=7,0r codn=6éb,.

Proof. By the reduction lemma 4.9., n..n' where j7n' =q and p is a
polynomial p(xn) with 3 = degree of monomials of p = 7. Let k be the
least degree appearing, so that p = akxs + .... Then jkn' is k-determinate,
because A(jkn') = (xl,...,xn_l,xﬁ—l) and so mzA > mk+1, and we can use
k k
] | -
Theorem 2.9, Thus n' ~ j ' n q + ax

- k 1k, _
=g +-yn, changing coordinates so that !ak1 X =Y .

- k k
=q-y, ~qtvy.

If k is odd changing coordinates LA makes n'
3 4 5 6 _7
+ = +
Classify as q + p where p x, Ex 0 ox i.xn X 0
and cod(g+p) = 1 2 3 4 .

Lemma 4,13, The cuspoids n with cod n = 6 form a submanifold of I7 of

codimension 6.

-

Proof. If n 1is a cuspoid, jzn =q-= xi + ... - xi_l.

Write m3/m8 = R x 8§, where R 1is the set of polynomials involving
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one of x cees X and such that 3 =< degree of monomials in r € R = 7,

-1
and S 1is the set of polynomials in x only, so that S ’%‘]Rs. Then

1?

j7n =q+r+s, r €R, s €S, The reduction lemma 4.9. gave a (unique
algebraic) map 6: R+ S such that n ~ n', and j7n’ =q + 0+ (6r+s).

cod n= 6% cod n' =6

® 0r + s 0

® s = -6r

e (r,s) € Me, where M is the graph of -6, and is a

6
submanifold of R X § of codimension 5. (6 1is algebraic and so graph

@ =t source of 6.) As q varies through Qn-—l we find that the required set

of cuspoids N with cod "> 6 form a bundle over Qn—l (of codimension 1

which has codimension 5 in m3/m8.

Thus the bundle has codimension 6 in r112/m8 = 17.

in mz/m3 by Lemma 4.8) with fibre M,

Now we classify the umbilics, Q._, * m3/m8. Let n € m® be such

that jzn =q, and g = x2

1 + ... - X _o- By the reduction lemma 4.9.,
n ~n' where j3n' =q+p and p is a homogeneous cubic in xn—l’ L
In place of X _qs X we shall use x, y respectively, for clarity.

Note that Lemma 4.12., which classifies cuspoids, has been interpreted in this
way in Diagram 4.1 with x replacing X .
Let (x,y) €R2. The space of cubic forms in x, y is,
{(a x3+a x2y+a xy2+a y3)' a,,a,,a,,a, €R} =]R4 The action of GL(2,R) on R2
1 2 3 4 1720730 :

induces an action on ]R['.

Lemma 4.14. There are 5 GL{(2,R)-orbits in RA, and so each p € RA is

equivalent to one of 5 forms:

dimension codimension

1) x3 + y3 hyperbolic umbilic 4 0
2) x3 - xy2 elliptic umbilic 4 0
3 x2y parabolic umbilic 3 1
(&) x3 symbolic umbilic 2 2

) o 0 4
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Proof. Consider the roots x, y of p(x,y) =0, p G'Ré.
There are 5 cases (1) 2 complex, 1 real
(2) 3 real distinct
(3) 3 real, 2 same
(4) 3 real equal
(5) 3 equal to zero
3

Case (4): p = (alx+azy)3 = u~ by changing coordinates,{~u = a;x + ayy

3

~ X

v independent.

Case (3): p = u2v where u, v are independent linear forms in x, y.
2

Case (2): p = dld2d3, product of 3 linear forms, d, = a;x + biy. We have

i
k, =4a, b, # 0 because the root of d, # the root of dy. Let
33 by
u+v= kld1 =u' (*#). We claim this is a nonsingular coordinate change.
u-v= kzd2 = v'}
u,v — u', v' has a change of basis matrix with determinant = {1 1 = -2.
1 -1
X,y = u', v' has a change of basis matrix with determinant = klk2 a bl
a, b2
= klkaB #0

Adding (*), 2u = kldl + k2d2

= (azb3—a3b2)(a1x+bly) + (a3b1—a1b3)(azx+b2y)

= x(alazb3-ala3b2+aza3b1-alazb3) + y(...)

= a3x(azbl-a1b2) + b3y(azb1—alb2)

= -k3(a3x+b3y)

= —k3d3.
So ul - wv? ~ 2u(u2-v2) = —k1k2k3dld2d3,v p. Thus p ~ x5 - xyz.
Case (1): This is the same as Case (2) except that a, = El’ b2 = El and
24, b3 are real. d2 = 51, kl = (a, b2 = 51 EI. = —EZ’

a b b

3 31 (%3 P3
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k, = |a b = a g - ab, = tt, t € R. Change coordinates, iu + v = kldl} (:L

2, b2 iv - v = kzd2

We claim this is a real change. Adding, 2iu = k3 3= itd3 and td3

- k2d2 = kldl + kldl, which is real. So both u and

is real.

Subtracting, 2v = kld1

v are real. It is a non-singular change because i 1| = -2i # 0. The

i -1

*
product of () 1is Zu(—uz—vz) = klkztp ~P. SO P~ Z(u3+uv2), absorbing -
Y

into the u-coordinate. 2(u3+uv2) ~:2(u3+3uv2) absorbing 3 into wv.

~ x3 + y3. vi=u-v

= u’3 + v'3 with u'=u+v }
. 3 3 3 2
By calculation x™ + y and x~ - xy are both 3-determinate and
both cod(x3+y3) and cod(x3-xy2) equal 3. Thus the orbits corresponding

7

to these are of codimension 3 in I° by Theorem 3.7.

Lemma 4.15. If n=4q+p, q GQn—Z’ p= x2y + higher terms, then either
1) n~q+ (xzyiya) and cod n = 4 (the parabolic umbilice)

or (2) n~gq+ (xzyiy5) and cod n = 5.

or (3) n belongs to X;.

Proof. If k = 4, then if p = x2y i_yk, cod p =k

det p.

(k-1 2 2 k '
Lemma 4.16. If k = 4 and j p=x"y then p~xy+y,or p~p' and

2
jp' =x"y.

Lemma 4.16. clearly gives Lemma 4.15.

Proof of Lemma 4.16. jkp = x2y + a polynomial of degree k

= xzy + axk + 2xyP + byk,

where P 1is a homogeneous polynomial of degree k - 2 = 2,

(x+P)2(y+axk—2) = (x2+2xP)(y+axk-2) = xzy + 2xyP + axk in Ik. Put
u=(xtP) and v =y + axk—z; vk = yk in Ik. So jkp = uzv + bvk. There

are two cases. b # 0: jkp ~ ulv i'vk absorbing Ibll/k

absorbing 1/|b]1/2k into u. b = 0: jkp = uzv ~ xzy.

into v, and
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Lemma 4.17. If n=q+p, p € Qn— 2 and p = x3 + higher terms in x, y,

then either (1) n~gq + x3 i_y4 and cod n =35

or (2) n € 27

6°
Proof. Calculation shows that x + y4 = p' is 4-determinate and cod p' = 5.
4o 3 4 3 22 3 4 . _ asx
ip=x"tax +a;xy+axy” + axy” +ay . a, #0: Put v=y+ ZTa
Then jAp = x3 + 3x2P + aava, where P is a homogeneous polynomial of degree

4
2 in x,v. Inl j4p = (x+P)3 + a4v4

~ u3 i.va, putting u = x + P and absorbing Iahl% into v.
a, = 0: As above we find that j4p ~ x3 + xy3, which is 4-determinate as

stated in Chapter 2. (This is Siersma's germ) In any case a short calculation
7
6°

Lemma 4.14 and a straightforward calculation produce the following

gives cod n = cod(x3+xy3) =6, s0 n €L

facts, The symbolic umbilic (S) 1s a twisted cubic curve of dimension 1 in
R3. The parabolic umbilic (P) is a quartic surface with a cusp edge along
S. The elliptic umbilic (E) is inside the cusp. The hyperbolic umbilic (H)

1s outside the cusp. (4.18)

CHAPTER 5., THE PREPARATION THEOREM.

This chapter is self-contained and is devoted to proving a major
result, the Preparation Theorem, which we need for Chapter 6.

The words "near 0" will always be understood to mean "in some

neighborhood of 0.,"

Theorem 5.1. (Division Theorem) Let D be a C* function defined near O,

from R xR® to R, such that D(t,0) = d(t)tk where d(0) # 0 and d is



294

C” near 0 in R, Then given any C%E: R x R" + R defined near 0, 3 C”
functions q and r such that: (1) E=qD + r near 0 in R x Rp,
k-1 1 n
where (2) r(t,x) = iZO ri(x)t for (t,x) € RxR
near 0.

k k-1 4

Notation. Let Pk: R xR -+ R be the polynomial Pk(t,A) = tk + 'ZO Ait .
— {=

Theorem 5.2, (Polynomial Division Theorem) Let E(t,x) be a C-valued C*
function defined near 0 in R x R®. Then 3 C-valued €* functioms q(t,x,A)

and r(t,x,A) defined near 0 in R x Rr® x Rk satisfying:

(1) E(t,x) = q(t,x,A)Pk(t,A) + r(t,x,x), and
k-1 i

(2) r(t,x,)) = I r,(x,)\)t s
i=0 1

where each T, is a C* function defined near 0 in R" x Rk. Moreover if
E is R-valued, then ¢q and r may be chosen R-valued.
Note that if E is R-valued we merely equate real parts of (1) in

Theorem 5.2 to give the last part.

Proof of Theorem 5.1 using Theorem 5.2, Given D, E we can apply Theorem 5.2

to find dps Tpo 9gs Ty such that D = qDPk + L and E = qEPk + L% let now

rD(t,x,A) = kgl r?(x,l)ti (*),

Now t¥a(t) = D(t,0) = A (E,00P, (£,0) + 1 (6,00 (= 0
k, ksl p g
= q (t,00t” + T r (0)t",
b Lo M)
Comparing coefficients of powers of t, rE(O) =0 and qD(O) #0 (d(0) # 0).

s4 (0
Write si(x) = rg(o,x). We claim that ’aa;( )I # 0,
]

k k k-1 k-1
t d(t) = D(t,0) = qD(t,O,)\)(t +i£0>‘iti) + i-E-o si(x)ti. Differentiating

3q N k-1 98
with respect to Aj and setting X =0, 0 = Sig{t,O)tk + qD(t,O)tJ + I 511(0)93
. 1=0 .
asi EE] J Bsi
Thus 5= (0) =0 4f 1<j and —1(0) = -q (0). So (35=(0)) is a lower
j .
9s
triangular matrix, and as qD(O) 40, Eii—(o) # 0.
h|
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By the implicit function theorem, 3 ¢~ functions ei(x) (0=<i<k-1)
such that (a) rlj)(x,e) 2 0, and (b) 6(0) = 0 (recall rlj)(O) = 0), Let
q(t,x) = qp(t,x,8) and P(t,x) =P (t,0). Then D(t,x) = q(t,x)P(t,x) (as

rD(t,x,e) = 0 by (a).) As q(0) = qD(O) # 0, P(t,x) = -?—“43& near 0 in

q(t,x)
R x R,
By (*¥), E(t,x) = qE(t,x,e)Pk(t,e) + rE(t,x,e) = q(t,x)D(t,x) + r(t,x),
qg(t,x,8) k-1 g i
where g¢(t,x) = —————— and r(t,x) = rE(t,x,e) = I ri(x,B)t . Finally
q(t,x) 1=0

E
let ri(x) = ri(x,e).
Suppose f: L+ C, f =u+iv and u, v: L >R, If 2 =x + iy,

3u _ du 3x _3_u._31=l +13u

then -—=-—.—">+ - =Sl 5 ——]. A similar result for v gives us that
9z 9X 93z dy 3z X y
f _ Ll du 3w du . 3v.
> = 2[(8x ay) + i(ay + Bx)] (5.3)

Lemma 5.4, Let f: T ~>T be C as a function RZ ->R2. Let Y be a

simple closed curve in C whose interjor is U. Then for w¢€ U,

£ (w) =%fo( dz 2"1“'[] __( y dzndz dz/\dz .

Z-w

(If f 41s holomorphic this reduces to the Cauchy Integral Formula

since f 1is holomorphic e % = 0.)
iz

Proof. Let w € U and choose € < min{|w-z|:z€y). Let Ue = U ~ (disc radius
€ about w), and Y, = BUE.
Recall Green's Theorem for RZ. If M, N: Ue +R are C® on Yoo

then

fy(de+Ndy) jf (—- ——-)dx/\dy.
€

Green's Theorem and (5.3) for f = u + iv give

f f dz = f (utiv) (dx+idy) = 21 ff -a:f_— dx Ady.
YE oz

2i dxAdy = -dz Adz, so [ fdz=-j[ —dz/\dz (*)

Y
€



296

£(z)

Z=w

Apply (*) to s noting that —%:h is holomorphic on U,

%
- - o 425 ()
U 2z
€ €

“ff f(z) dzAdz f f(z) dz = f ﬁfé) dz - f £(z)
Y

where Ce is the circle, radius €, centre w.

With polar coordinates at w, f Z(:) dz = f f(w+se )ide As

€

e~ o, RHs.of()+f £2) 4, - 25if(w), and L.H.S. of (3)

A (z) dzAdz
= » =[] el

T zZ=-w
{The limit exists because j% is bounded on U, and ;%;» is integrable over U.)
iz

Proof of Theorem 5.2. Let i(z,x,k) be a C* function defined near 0 in

T xR x tk such that E(t,x,A\) = E(t,x) YV t R, i.e. E is an extension of E.

E(z) 1 gy 3E(2) dzndz
Then FE(w,x,)) = Zni f dz + —— 15 fﬁ]az i by Lemma 5.4, Let
—l 1 Pk(Z,X) Pk(w,)\) k-1
Pk(z,X) - Pk(w,X) = (z—w)izO pi(z,k)w , i.e. i + 12 Py (z, A)w .

In the expression for ﬁ(w,x,x) multiply top and bottom inside the integrals

Pk(z,)‘) . n X
by Pk(z,x) and expand e giving E = qu +r on E xR xI where
- A
a(w,x,2) = E(z!x!X) dz 1 9E(z,x,2).1l.dzAdz

/ B
2ni Pk(z,A) (z- w) 2ni U3z Pk(z,A)(z-w)

z,1)
- B(z,x,)) . 1 ¢ 9E -
Ty &}P (z,») Py (z,1) -dz ) If (Z X,A) . P ( Y +dz Adz,

and ri(x,l)
so long as these integrals are well defined and yield C%® functioms.

The first integral in the definition of both q and r is well-
defined and C as long as the zeros of Pk(z,k) do not occur on the curve Y

for A near 0 in Dk. Such a y 1is easily chosen.

But U may contain zeros of Pk' So we need E such that EE
3z
vanishes on zeros of Pk and for real =z to ensure q, r well-defined. As
the integrands are bounded we need C® E such that 3%- vanishes to infinite
3z

order on zeros of Pk and for real z to ensure q and 1 C%.

Lemma 1. (Nirenberg Extension Lemma) Let E(t,x) be a C® T-valued function
defined near 0 in R xR, Then 3 a C® E-valued function E(z,x,A)

defined near 0 in € x B® x €° such that,
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(1) E(t,x,\) = E(t,x) V t €R,

2) 3:- vanishes to infinite order on {Im z = 0}.
3z
(3) é:- vanishes to infinite order on {Pk(z,x) = 0},
3z
Lemma 2. (E. Borel's Theorem) Let fo, fl’ ... be a sequence of C” functions
on a given neighborhood N of 0 in R®, Then 3 a C® function F(t,x) on
i
a neighborhood of 0 in R x ?p such that szg-(o,x) = £;(x) vi.
Cw
Proof. Let p: R —>TR be such that p(t) = (1 |t} =%
0t z1

- i
Let F(t,x) = I ET p(u,t)f. (x), where {u,} 1s a rapidly increasing
op T PPN 1
sequence of real numbers tending to =, so that F 1is C® near O,

(Lemma 2 may be used to show that for any power series about 0 in
R® 3 a C® real-valued function with its Taylor series at O the given power

series.)

Lemma 3. Let V, W be complementary subspaces or R" (= v#W), Let g, h be

c® function? near 0 in RF, such that for all multi-indices «a,
a[“lg(x) a!‘"lh(x) VX

€VAW, Them 3 C®” F near 0 in RF, such that

ax“ = Bxa
BIQ!F(X) _ aia]g(x) x €V,
Ya, 5 =
ax IaT“
Lla .
8 'h(x) x €W (A multi-index o = (@a,5¢..53 )
a —_— 1 n
ax
and |a| = a; +...+a so that
n
al+...+an
2%l g ) __3 g(x)
o a a "
x ax, ... ax ™
1 n

Proof. Without loss of generality h = 0, for if F. 1is the required extension

1
for (g-h) and 0, then F = F, + h 1is the required extension for g and h.

Choose coordinates Vi3 cee» ¥, SO that V = Yy = eee = yj =0
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and WEyj+l=...=yk=0. Let
o 4lal j
o=yt altly 2
F{y) |uf=0 o or® (0""’O’Yj"”l"”’yn)p(u‘uliilyi)' where p 1s as in

a = (al,...,aj,O,...,O)

Lemma 2 and {ui} increases to « rapidly enough so that F is C® near O,

B8 ¥!
If y € W, each term of 2 g( ) contains a factor 3__:(& (0,...,0,Yk+1,-..,}"2.
dy 3y l
8
Since (Oy---:oyyk+l,..‘,y Y € VN W, this factor = 0 (h=0). So R o 0.
n Bys

If y € V, note that A (u ] 2)
- I
’ R LIPS

= {1 y =0,
yl=...=yj=0 0y #0

e o 518l [oo 4lal
and then B—Z(L) = z 8 g L' 9 g(y)] .
3y |a]=0 3y &* ay“

¥y e e=yy=0

If b, # a; some 1 = j, then this term is 0. In fact the only

8]
nonzero term is 8 g(y)
oy

Lemma 4. Let f be a C€° C-valued function mear 0 in R and let X be
a vector field on R® with [ coefficients. Then 3 C* E~valued F near
0 in R xR" so that

(a) F(0,x) = £(x) V x € R".

(b) 2_1; agrees to infinite order with XF at all (0,x) € R x r",

P

Proof. Try F(t,x) = etxf = kZO ;—' ka. Differentiating termwise at t =0

gives (b). Clearly (a) holds. To ensure that F is C® use Lemma 2 to choose

o ¢k oy
C®” F such that F = kEO T X fp (ukt).

Proof of Lemma 1. We use induction on k. If %k = 0, Pk(z,)\) = 1, so we need

C” E(z,x) such that E(t,x) = E(t,x) Yt € R and g(t,x) vanishes to
5z

infinite order Y t € R. Let z = s + it, 2 a—_ = g—s- + 1 %t_ (Compare 5.3)
9z
Then Lemma 4 with X = -1 % gives such an E.

Suppose Lemma 1 is proved for k - 1. We show 3 C°F(z,x,A) and

G(z,x,A) such that
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(I F and G agree to infinite order on {Pk(z,A) = 0}
(2)' F 4is an extension of E,
3)' Eg— vanishes to infinite order on {Im z = 0},

3z

(4)' Let M= F[{Pk(z,x) = Q0}- 2%, vanishes to infinite order on
8P, 39z

k
{57 (z,3) = 0}

() ég- vanishes to infinite order on {Pk(z,x) = 0}.
az
Existence of F and G proves Lemma 1. Let u = P(z,)) = Pk(z,k) and

A = (Al,...,lk_l). Consider (z,ko,A’) -+ (z,u,A'Y on T xT x Ek_l. This

is a valid coordinate change because z 1. In the new coordinates,

Ju
BAO

{Pk(z,k) = 0} is given by u =0, By Lenma 3 3 E agreeing to infinite order

with G on u =0 and to infinite order with F on Imz =0. (u=0 and

2k+2

Im z = 0 intersect tranmsversally in R D (@), (3)' and (5)' now imply

E 4s the desired extension of E.

Existence of F and G. Suppose we have that F exists. In {z,u,A')-

3P 3 3 5 L, 3P 3

P
coordinates, —— becomes

57 EE-+ Fyewe and -—— becomes — + 57 =" So in
o9z 3z du
these coordinates we need G(z,x,u,A') such that
(a) F =G to infinite order on {u = 0}, and
(b) 62: + %g—g:)G = 0 to infinite order on {u = 0}.
dz du
3P, 71 3 . - .
Let X = ~(§;9 — . As in Lemma 4 we must find C% G satisfying (a) and
3z
®"Y E% = XG to infinite order on {u = 0}. The formal solution is,
3z
<« - P _ 2
¢= 1 @%Mx1 000,150 *)
=0 7y
As §¥-= 0 to infinite order on {Eg-(z,A') =0} by (&', XiM is C* in
9z 3z

(z,x,A") V 1, so we can choose {ui} to increase quickly enough to make G C*.

We need only a C* F so that in (z,x,u,A')-coordinates,

(2)' F(t,x,u,A') = E(t,x) V t € R

3)! 3F _ XF to infinite order on {Im z = O}

3z
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oM Py
(L)' If M= F]{u = 0}, — =0 to infinite order on {'5'2—= 0}.
oz
Consider u = 0 and the coordinate change 1A' = (Xl,...,)\k_l) —
M A
(,.cesi——=—) = A", The conditions are now that we find ¢ M(z,x,A") such
1 k-1
that,

(1) M(t,x,A"™) = E(t,x) V t € R

(1) M vanishes to infinite order en {Im z = 0}, and

3z
" " ” " " n n =
(111) {p,_1(z,2™ = 0}.
The induction hypothesis gives such a C*® M(z,x,A"), and we can view M as a

C” function of (z,x,\').

Let F(z,x,u,A') = ;0(§)ixiM(z,x,A')p(ui{ﬁlz). Compare (*). By (III),
=V it

XiM is C® in z, x, A", and so the {ui} may be chosen so that F is a C%
function satisfying (2)', (3)'. Also, on u=0, F=M and (III) gives (4)'.

The completes the proof of Lemma 1.

The remarks before Lemma 1 state that this suffices to prove the
(Polynomial Division Theorem )Theorem 5.2.

. . n+s s .

Let = be projection R +R . 7 induces m*: Es - En+s’ where

Es is the set of germs at 0 of C®™ functiomns RS + R, as usual. Let M

be an En+s—m0dule, and let M denote the same set regarded as an Es—module

with structure induced by =%,

Theorem 5.5. (Preparation Theorem) Suppose that
(1) M 1is a finitely generated En+s-module,
(2) M/(n*ms)M is a finite~dimensional real vector space.

Then M is finitely generated as an Es—module.

Proof. There are 2 steps.

Step 1. Let My R* xR > R°® and t: R xR+R denote the projections., We

prove the theorem for n =1, 7 = LR Let Vs

generating M as an Es+l—modu1e, whose images in M/(ﬁ*ms)M span this vector

vevy vp be elements of M

space. Then any v €M can be written v = E a,v, + E a,v
=1 11 g=3 174

where a; € R,
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and a; € (w*m )E 4+ In particular J a, € R, a,, € (n*mS)Es+l (1=1, j=p),

1] 1]

such that tv = E (a +u )v . Let D be the determinant |t6.. -a,, - a..l;
13 1] 13

by Cramer's rule Dvi =0,i=1, ..., p. Expanding the determinant we see

that D is regular of order k, some k =< p, since D](OXR,e) is a monic
polynomial in t of order p (aij=0 on OXR). Since D.M =0, M 1is an

/D.E

s+1 )-module.

s+l
Now D is regular of order k (i.e. D(t,0) = d(t)tk, where d(0) # 0
and d is C® near 0, and D is C*® defined near 0 in R® x R) and so
using the Division Theorem 5.1., ES+1/D. Es+l is finitely generated as an

E _-module.
s

/D. )~module, it

Since M is finitely generated as an (Es+1 +l

follows that M is finitely generated as an Es—module.

Step 2. We complete the proof of the theorem. Factor m as follows:

m , L s
RPxr" 25 | 25> ®° R-—> R°,
where LPE r® xR' > R® x R}-l is the germ of the projection,

(Y7alg- .. ’ai) —_— (y;al’ LR} ’ai—l) .

For each i, 0 £ 1 =n+ s, we give M the Es+i-module structure induced by

(m

o...om )%, If 1 =1 this is the E -module structure of M since
i+1 n s =
T = M0...07 .,
Now we prove by decreasing induction on i that M is finitely
generated as an Es+i-module ¥ i, 0 £41 <n, By hypothesis, it is true for
i = n, so it suffices to carry out the inductive step. Assume M 1is finitely
generated as an E i+l -module.
* = *
(w mS)M (ﬂlo...oni+1) (mS)M. (On the L.H.S. M is regarded as

- = % C
an En+s module, and on the R.H.S. as an Es+i+l module.) So (= m w (n# AL +§
In particular M/(Tr1+l y JM 1is finitely generated as a real vector space, In
particular the hypotheses of the theorem are satisfied for o, in place of .

i+l

Thus we may apply Step 1 to see that M is finitely generated as an Es+i-module.
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This completes the inductive step and also the proof as i = 0 1is the statement

of the theorem,

Definition. Let = be projection Rn+5 +R%. A mixed homomorphism over 7%

of finite type (a mixture) is a diagram:

where A is a finitely generated Es—module, is
B is an E__ -module, A—25¢
n+s l |
%
C 1is a finitely generated En+s-module; Es — En+s

@ 1is a module homomorphism over =%, i.e, a(na) = (n*n)(ca),

n€E  and a € A; B is an £, -module homomorphism.
s n+s
Corollary 5.6. C = oA + BB + (w*mS)C = C = aA + BB.

Proof. Let C' = C/BB and p: C > C' be the projection. As C is a finitely

- 1 t
generated En+s module so is C'. (6D
%* L. 1 ' % [ '
(n ms)C msg , s0 C"/(w mS)C c /ms(l . (2)
Our hypothesis = C' = paA + (n*ms)c' = C' = paA + ms_g' (3)

and this = C' /msg' is a finitely generated Es—module. Choose now a finite

base {Ci} for C' mod mSE' as an Es-module. Any c € C' can be written,

= [ .
c Enici mod mS_g (finite sum) ny € Es'

= 1 ' . .
Now n; ni(O) + ngs ni(O) €R, ng € m in the notation of Lemma 2.8. So
¢ = In,(0)c, mod m_C'. Because ¢ was arbitrary we have shown that C'/m_C'

i1 1 s— - S
is a finite-dimensional vector space over R, and hence by (2) so is

C'/(vr*ms)C'- (4)

(1) and (4) for C' are the two hypotheses of the Preparation
Theorem 5.5, and so C' is a finitely generated Es—module. We can now apply
Nakayama's Lemma 2.10 with A = Es’ a = ms M=C' and N = poA to (3).

Therefore C' = poA,

And so C' = paA, i.e. C = aA + BB.
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CHAPTER 6. UNFOLDINGS

We defint the category of unfoldings of n, for fixed n € mz. An

object (r,f) is a germ f: R x I{r, 0~+R, 0 (shorthand for "is a germ f

of a C° function R° x ]Rr,O +R,0"), such that f]]Rn x 0 =n, i.e.

R — >0 g

1x0 1 commutes.

S

A morphism (¢,4,€): (s,g8) + (r,f) is a germ ¢: Rn+ , 0 ->Rn+r,0,

(6.1)

R r" 1 r® R s germ ¢: R5,0 »R",0,
1 1x0 ® 10 1 a shee/r germ €: ]RS,O +R,0,
R RS T R guch that ¢[R® x 0 = 1, and
ns § ' ‘Nr if wr: Rn+r -+ ]Rr is projection,
®S o o nr¢ = ‘Ms and g = f¢ + v .

Definition. (r,f) is said to be universal if, Y (s,g) 3 a morphism,

(s,g) =+ (r,f).

Definition. (¢ ,$,€) is an isomorphism if it has an inverse. Note that this

requires r = s, and ¢ and ¢ are diffeomorphism-germs, so ($1,$_1,—e$—1)

will do.

Prolongation of a germ, Given n € mz, let z = jkn. Choose a representative

function of n, e: ]Rn,O + R,0. r" operates on e by translation as follows.

Given w € ]Rn, define w(e): ]Rn,O »R,0

x » e(wtx) - e(w).

w{e)(x)

Graph w(e) = graph e with origin moved to (w,e(w)).

elw)

elw+x)

Denote by j,e the map obtained: Rn,O > m,n
1

w v germ at 0 of w(e),

Let jln denote the germ at O of jle (we shall show this is unambiguous).

j.n 1is called the natural germ prolongation of n. jkn = nmoj,n 1is called the
1 £ 1 1

natural k-jet prolongation of n, where 7 1is the usual projection m + Jk.
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Lemma 6.2. (1) jln and jlin are uniquely determined by n (not by z,
necessarily), i.e. they are independent of the choice of e.
(2) If n 1is (kt+l)-determinate, jlin is the germ of an embedding
Rn,O > Jk,z.
(3) The tangent plane Tz(im jIIn) lies in wA(A=A(R)) transverse
. .k 9n
to w(mA), and is spanned by {j —a—x——}.
i

Proof. If e and e are 2 representatives of n, them e =e' on N, some

neighborhood of 0 in r". w(e) = w(e') if w+ x, w € N, So jln is

well defined (and clearly jllcn is too). (1) is proved. (2) follows using

(3) and the definition of determinacy. (3). Clearly Tz(im jll(n) is spanned

by jk{%—} which are in 7A. By the definition of A (the ideal generated
i

(30
{

e }), mA and the space spanned by {_’c)n_} are transversal in A (use
i

by IX
k+1

i

Lemma 3.8). Quotient out by m . Hence Tz(im jllcn) is transverse to
a(mA) in  mA.

We define the k-jet prolongation of an unfolding (r,f) of a germ

n € m2 in a similar way. Represent f by a function £ ]Rn+r,0 +R,0, Let

F be the germ at 0 of the map ]Rn+r,() > Jk,z
(x',y") » k-jet at 0 of the function
r%,0 - R,0
x v f(x'+x,y') - E(x',y')

F is the k-jet prolongation of the unfolding (r,f).
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Definition, We say the unfolding (r,f) 1s k-transversal if the germ F 1s

transversal to the orbit sz in Jk.

- n
Let Ays ooy X be coordinates for R~ and Yo vers ¥y be

coordinates for R'. Choose £ ¢ f, and then for each j =1, ..., r we have

a function Ll from Rn+r’ 0 to R, of (0,0). Let 23.,f be the germ at
3y . Y. 3
- J . h]
p of é——-]Rp x 0 - 3f (0,0). %.f is in m. V_ will denote the vector
8y 9y b f
subspace of m spanned by Blf, vy Brf. . (6.3)

Lemma 6.4. An unfolding (r,f) of a germ n is k-transversal

® m=A+ Vf +-mk+l.

SN
Proof. 1In Jk, i.e. mod mk 1, the tangent to the orbit sz is mA (Lemma

2.11), the tangent to the x-direction of F(=j§n) is Tz(im jin), and these
two are transverse in A by Lemma 6.2 (3). The tangent to the y-direction
k+1

of F is Vf (6.3). So F 1is transversal to sz o A+ Vf span m mod m .

J~k

Corollary 6.5. Let n have finite determinacy and c = cod n, then 3 an

unfolding (c,f), which is k-transversal V k > 0.

Proof. Because det n is finite, so is cod n = ¢ finite by Lemma 3.1; by

definition cod n = dim m/A (A=A(n)), Choose Ups eees U € m such that their

images in m/A form a basis for m/A. Define an unfolding (c,f} by,

3f
3
Y3

of

of n
£: R xRC >R Then 5}7_—]11 X0 -3 (0,0)

= uj(x), S0 ajf

c J
(x,y) + n(x) + jElyjuj (x). uy x). (uij)
By the choise of {u,}, {3,f} span m/A. By 6.3 m

3 3
A+ Ve + mk+1 ¥k > 0. Now apply Lemma 6.4.

"
>
+
<3

]
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Lemma 6.6, Let n have finite determinacy, with a universal unfolding (r,f).

Then (r,f) 1is k-transversal V k > 0 and r = cod n.

Proof. Let ¢ =cod n and (c,g) be the unfolding of Corollary 6.5, which is

k-transversal V¥ k > 0. By the definition of universality 3 a morphism

(6,8,6): (c,8) » (r,£). So g(x,y)= £(4&,y)) + e(y) where (x,y) €R" x RS,

by (6.1. = £07x,0y) + e(y) with ¢'x =71, (4(x,y)),

n+r
choosing xi, veey x; and yi, cees y; as coordinates for R . Now we have

y
3
g 3 -
(x,0) = I ———ai, (¢0x,¢0) e L (x) + 1 (¢ x ¢o) (0) + __y 0).
i i 9%y ¥ h 5 _ ]
y
0 n - 3¢i 3¢h
¢ =¢/R  x0=1 and ¢0 =0 by 6.1. Also -—= € E and = (0) €R. So the
first sum is in A4, as %ET (x,0) = i)I‘—-(x), and the htP term in the second
b4 ax
1 i
9f af ;
sum is 5;;-(x,0) x constant. Remember ahf = By'(x ,0) = Byﬂ(o’o) € Vf. So
Vg A+ Vf.

Now m= A+ Vg Veso by Lemma 6.4.
So m<C A+ Ve Yk>0, i.e. (r,f) is k-transversal Y k > 0 by

Lemma 6.4, (A,Vf<im). Also r = dim Vf > dim wm/A = ¢, follows at once.

Lemma 6.7. If n dis k-determinate and if (r,f) and (r,g) are k-transversal
unfoldings of n, then they are isomorphic.

B e+l
Proof. (r,f) is k-transversal = m = A + Vf + m Som=A+YV

n 1is k-determinate = mk+1 Cmh CA (Theorem 2.9) (6.8)

(Lemma 6.4)
£

Let 3jf denote the image of ij in m/A. Then (r,f) k~transversal

means ij spans m/A, (r,f) and (r,g) are isomorphic if 3 a morphism

(¢,8,€): (r,f) + (r,g) where ¢, § are diffeomorphisms, We write f = g,

Lemma 1. It suffices to prove Lemma 6,7 in the special case 3.f = ajg Y3,

Proof. We introduce a standard unfolding (r,h) and show that 3 h' = h such

that ajh' =3,f, =1, ..., r. By symmetry 3 also h" ®h such that

3
3,h" = 3.g, 1 =j =r. Assuming the special case of Lemma 6.7,
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Choose Ugs ey uc € m such that \:1, ey I-.IC form a base for m/A, where

¢ = cod n, finite since det n is finite. Define h: R xRS xRS xR

c
x,v,w) > n(x) + I v,u,(x)=n+vu,
j= J ]

where v = (v . (wl,...,wt o are disconnected control

l"'vc)’ u =

coordinates, see below.)

— T -
Now 3jf = h£1 ajhuh’ ajh € R. Denote the matrix (ajh) by A. A

has rank ¢ since ij span m/8. Choose a matrix B such that AB is

nonsingular, where AB is,

T A B (not the matrix product)

Define &: r" + &% x Rr—c’ a linear isomorphism
y = (yA,yB).
This induces h': RO —¢ilx—¢~>~12n+r ——h—>R. (1%4,4,0): (r,h*) » (r,h) is

(X,Y) hd (x’yAryB) Las n(x) + yA‘-\

r
clearly an isomorphism h= u, (x) 55 h' =
s 3y J( }ise, 3 hElajhuh(:c)-
—_— r -
0 3> c. So 2.h' = I a_u (x)=2,f.
k| h=1 JR h( ) ‘3
E = . . : n_ s
Lemma 2. LI those germs in En+s vanishing on the R’ -axis.

Proof. C: o is generated by {yj) which vanish on the R"-axis, where

Xy5 -ee, X, aTe coordinates for " and Yys cees Vg are coordinates for

r°.

D: Suppose the function 6(x,y) vanishes on the R™-axis.

1

3

[ 1 - (x,ty)y.dt
s o0V,

0 3°%; b

]

1
8Gx,y) = (8Gx,t)1] = [ 3% (x,ty)de
0

nts

= €E
§yj¢j (x,7), wj

The continuing proof of Lemma 6,7 now mimics the first half of

Theorem 2,9, Let E" = (1-t)f + tg. Then assuming ij = ajg,
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[

9.E

= (1-t) a 3.f + td.g
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So Et is k~transversal. For 0 =t =1 we

jB

have a l—parameter family of k~transversal unfoldings connecting f and g.

Fix t_,

Lemma 3,

t
3 an isomorphism (¢t,$t,et): (r,E % » (r,Et), Yt in some

neighborhood of to .

This implies Lemma 6.7 by the compactness and connectedness of

{o,11 (cf., 2.9).

Lemma 4.

t
1 ¢ °=

n+r

3 agerm ¢ at (O,to) of a map BT xR, 0 xR~+R 0.

"o on $ " " wonoon Rr « R, 0 x R, R , 0.
oo e " " " " function R® x R, 0 x R » R,0, such that
. -to t
1 (so ¢ = 1), and ¢ =0, and YV t in a neighborhood of t ,
o

t to

2) ¢t[Rn>< 0=1; ¢t, ¢_t commute with 7: ]Rn+r +]Rr, and (3) Et¢t +enwm=E

(i.e. E(',y',t) + e(y,t) = E(x,y,t_ ), where ot (x,y) = (x',y").

Lemma 4 = Lemma 3 because the set of diffeomorphisms is opin in the

space of maps. (See proof of 2.9)

Lemma 5.

4)

(y,t)

3E L) 3 3E e
:)E et (K1) 5 (xy,t) + 1 ayT Xy g (,t) 4 o G AT

We can replace (3) by

ax! R

i J 3j

Differentiat:ion of (3) with respect to t gives (4). Integration

with respect to t from t, to t of (4) gives (3). (See 2.9)

Lemma 6. 3 a germ X at (O,to) of a map BT xR, R x 0 xR ->Rn, o,
wowoon y " " o on o oon Rr xR, 0 %R "*]Rr 0,
> E]
meonon z " " " " function RT xR, 0 xR >R, 0 such that
3E
(5) i'a_ (x,y,t)X (an9t) + 3: F (X,y,t)Y (y’t) + — (x’Yst) + Z(Y,t) v
1 3
J3E 9E 3E
(x,y,t) 1in a neighborhood of (O,to). (5 X + ay Y + ﬁ+ 2 =0).
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Proof that Lemma 6 = Lemma 5.

x'=X(x',y',t), x' = x at =t

y' =Y¥(y',t), y'

let (x',y') = ¢(x,y,t) be the unique solution of{

y at t=t°.
Let yv = $(y,t) n " " " "

Let e(y,t) =}'t z2(6(y,7),1) dt, So —g% (y,t) = Z(y',t). Substitute x', y', t

t
[¢]

for variables x, y, t in (5) and get (4).

¢t|Rn x 0 =1 since (x', y') = (x,0) 4is a constant solution of

{xca“xOxR) =0=x",
Y(0 xR) =0=y'".

We now choose a mixture. Let A be a free Er+l—modu1e on (r + 1)
variables (finitely generated), each a = (Yl""’Yr’Z)’ some Yj’ Z € Er+l'
Let B be a free En+r+l—-module on n variables, each b =X = (Xl,...,Xn),
some Xi € En+r+1‘ Let C be En+r+1 (finitely generated).
at A> C is given by oa = %% Y+ Z; it is over n%* because it is linear
in Y, Z. (r 1is projection Rn+r+l —>Rt+l) TB
B: B~ C is given by 8X = g—i .X. (Recall mixture TL—»C
of Chapter 5). ‘

Er+l-1—r'>'En+r+l
= *,
Lemma 7. C = aA + BB + (m mr+1)C.

Proof that Lemma 7 = Lemma 6. Apply Corollary 5.6 (to the Preparation Theorem)

to give C = ¢A + BB. Then er = a(mrA) + B(mrB), where the Er—module

structures on CyA, B are induced by projection onto Rr'.

Now g—f= g-f. And £[R"x0 =n=g[R"x0 (¥£). So <X vanishes

at
on R® x 0 xR in Rn+r+l. By Lemma 2 -g—i € er, and so Z_E € a(mrA) +

S(mrB), i.e. dgerms X € mrB, Y and Z € mrA such that

- 2% = g—i.x + %.Y + Z, as germs. Lemma 6 follows applying Lemma 2 a few times.

Proof of Lemma 7. (And hence of Lemma 6.7) As Et is k-transversal Vt,

. = A . = . €C,
by (6.8) o + VEto So En A+ vEto +R. Let £ C, and

E(x) = £(x,0,t ) € E_ . Then E(x) = I 2
o n i

to
‘X . .Y, +
% X, + I3.E XJ s, where

i ki

giéEn,ij €R and s €R.
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3E 3E
Let z(x,y,t) = I -—(x,y,t)X, (x,y,t) + I —— (x,y,t)Y.(y,t) ~
19y i 2 j

J
3E AE 3E
§ K (O,O,CO)Yj(O,to) +s. So ¢ = ?);'X + 3y Y+ 2Z
— € BB + 0A.

t
Now ;(x,O,to) = £(x) because E oan x 0 = n and also

(0). So & -t vanishes on the fibre B™ x 0 x to.

By Lemma 2 § - € ('n*mr )C. Hence & € oA + BB + (ﬂ*mr+l)C, proving Lemma 7.

+1
Given an unfolding of n, (r,f), f: Rn+r’ 0 >*R, 0, we introduce d
disconnected controls as follows. Let g be the composition,
Rn+r+c1 < RY x R x Rd _’Rn+r SR
(x,y,w) = (x,y) » £(x,y) = g(x,y,w).

We say (r+d,g) is (r,f) with d disconnected controls. Using the morphisms

Axw,7,0): (r+d,g) > (r,f) and (1%x1,1,0): (r,f) ~ (r+d,g), where 1 is
the injection map, we see that (r,f) is universal <« (r+d,g) 1is universal,

Clearly also if (r,f) is k-transversal so is (r+d,g).

Theorem 6.9. If n has finite determinacy, and has (r,f) and (r,g) as

universal unfoldings, then they are isomorphic.

Proof. By Lemma 6.6, (r,f) and (r,g) are both k-transversal, V k > O,
Choose some k such that n 1is k-determinate. Then Lemma 6.7 provides an

isomorphism.

Theorem 6.10. If n 1is k-determinate, then an unfolding (r,f) £s universal

e it is k-transversal.

Proof. = 41is Lemma 6.6. .

Given a k-transversal unfolding (r,f) we must show that for any
unfolding (s,g) (also of n), 3 amorphism (s,g) > (r,f). If ¢ = cod n,
choose ups
> R

cees U spanning m/A as in Corollary 6.5. Let h be the map

Rn x Rs+c
c

(x,y,v) » g(x,y) + I v.u,(x

Y g(x,y 5513 j( )

so that (s+c,h) is a k-transversal unfolding of n by Corollary 6.5.
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let s+c+d=r1+4d', 1.e, choose such integers d, d' (one can be zero).
Let (s+ctd,h') be (stc,h) with d disconnected controls, and (r+d',f')

be (r,f) with d' disconnected controls. Both will be k-transversal (as

noted above), and we can apply Lemma 6.7 to show the existence of an isomorphism
(¢,9,€). We now have, (s,g) M (s+c,h) }E—ZEZ—,(L (s+c+d,h') f.’if,

1pr,nr,0
(r4d',f') —————> (r,f), with jl’ j2 obvious injections, T.oa projection,

This is the required morphism.

Theorem 6.11. If n has finite determinacy, it has a universal unfolding
(c,f) where ¢ = cod n, and moreover ¢ 1is the minimum dimension of any

universal unfolding of n.

Proof. By Corollary 6.5 a k-transversal unfolding (c,f) exists with
k = det n. (c,f) is universal by Theorem 6.10. Now use Lemma 6.6. for

minimality.

CHAPTER 7. CATASTROPHE GERMS.

+
Let n € mz, and suppose n has an unfolding f: r" r,O +R,0,

Represent f by a function £: RF+T,O + R,0 and define M_ to be the subset

f
+ - -~
of BT " on which o cee = K2 S 0. Let the function X_ be the composi-

axl an f

™
. +
tion Mf cBRYT —Is 8", Observe that 0 € Mf because n € mz. So we can

define Xf to be the germ at 0 of Xf. Xf is called the catastrophe germ

of f.

Lemma 7.1. Let n € m3 and cod n=c., Then 3 a univefsal unfolding

(c,f) such that Mf is diffeomorphic to RS, Then Xf is a germ at 0 of

a map ]RC,O —>Rc,0.

2

Proof. n € m3 = A Cm. And so when choosing a base u u, for m/A,

17 e
x, if j=n
we can demand that u, (x) ={\ d
J a monomial of degree = 2, if n< j = c.
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¢
Let f(x,y) = n(x) + ¢ yju-i (x); (c,f) 1is k-transversal VY k > 0, and so is
j=1"d 1

3u
af an ¢ i
L AL +
Bx,  oxg Yy ¥ y<EiYy ax

universal using Theorem 6,10 with k > det n.

i
- n+c _
0= Mf, i.e. Mf 1s the subset of R where ¥; = wi(xl""’xn’yn+1""’yc)

Vi=1l,...,n. So ¥ is a map R; Xl(;_n-» R;. The graph of such a
polynomial map 1s diffeomorphic to its source, and Mf = graph of

q,cmnx][{c=]RnX]Rc_nx]Rn, so M, ~R°,
x Ty “x Ty y £

We remark that Mf is not a manifold in general. E.g. n = xS,
x5 ax3 af 4 2 2
f = —5—+ =S o5 D X + ax", and for (x,a) €R", Mf looks like:
a

Lemma 7.2. Suppose n has finite determinacy, and n = q + p, where

2

2
q = %X, + ... - xp and p 1is a polynomial in X cees Xy only,

+1°
consisting of monomials of degree = 3. Suppose (r,f) is a universal
unfolding of p. Then if g=q + £, (r,g) is a universal unfolding of n

and Xf = Xg'

Proof. By Lemma 6.6 (r,f) is k-transversal V k > 0, and in particular for

k = det p = det n, Lemma 6.4 gives m, = A(p) + Vf + m]'d'1 which, with
m1;+1 C A(p) (Theorem 2.9) gives m, = Ap) + Vf. Here X =n - p, and m,
. E . s P
is the ideal of N generated by X410 o X . Similarly m, is the ideal
of Ep generated by Xps eees X0 m and E denote m  and En' Then
mpE + mkE = mQE + A(p)E + Vf.
Now m=mE+mE and V_ =V , Also A(n) = (x x-af—...a*f—)
o A £ g’ h 1270 p’axp+1’ "axn

= mpE + A(p)E.

k+1

So m=A(n)+Vg=A(n)+Vg+m for k = det n and so by

Lemma 6.4 and Theorem 6.10, (r,g) is universal.

; % . -
If i <op, %, 2x; (=0 for Mg)
=M =0 x M.,

g £

3 of
IE 10, =g (

0 for M)
1 1 &
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% -
_._r..). Rt
= Xf = Xgo

We have Xf: Mf co er+A

T

+X
r LI

X:M <R’ xR
g g

Lemma 7.3. Suppose (r,f) and (s,g) are 2 unfoldings of n, and 3 a
morphism (¢,$,e): (s,g) ~ (r,f). Then Mg = ¢_1Mf, and Xg is the pullback

of Xf under ¢, é.

y -
Proof. We have Rnxy —‘b—* ]Rnx¢y
gy £4Y commuting.
&y,
R sheer R
n Tx(¢y> n -
Giving, Tx(]R xy) v T¢yx0R xby)
y ¢y .
Tx(g ) T¢yx(f ) commuting.
R -——1—> R

¢0 =1, so ¢:y is a diffeomorphism for small vy, and TX(¢y) is an isomorphism

for small y. (x,y) € Mg e Tx(gy) = 0 (definition of Mg)
e T (f¢y) = 0 (diagram commutes)
¢’ x

hod (¢yx,5y) € Mg (definition of Me)

e ¢(x,y) € Mf, i.e. Mg = ¢ ]Mf.

We have that ¢—l Mf —_— Mf
- Xg le commutes, completing the lemma.
R . T
¢

[ ] 1 ol
Recall that if ei is a germ Mi’pi+Mi’pi where Mi’ Ml are C

manifolds, 1 =1, 2, then 61 ~ 92 e 3 diffeomorphism-germs 61, 62 such that
-]

]

lél 162 comnutes,
6

M,,p, ————> M,,p,
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Corollary 7.4. 1If (¢,$,e) is an isomorphism, Xg «/Xf.

Proof. ¢, $ will be diffeomorphism-germs; the requisite diagram is at the
end of Lemma 7.3.

Lemma 7.5. If (r,g) and (r,f) are universal unfoldings of an n, of finite
determinacy, then Xf ~ Xg'

Proof. This follows from Theorem 6.9 and Corollary 7.4.

Lemma 7.6. If n has finite determinacy and (s,g), (r,f) are universal
unfoldings of n with s > r, then Xg ~ Xf x 1577,

Proof. Let (s,f') be (r,f) with s-r disconnected controls. Then (s,f')

is universal, so that va ~ Xg by Lemma 7.5. Also M., =M. X rR¥T,
s-r
a
R® =grf xrST
s-t
i.e. Xf, = Xf x 1

Lemma 7.7. If n has finite determinacy and is right equivalent to n', and
if (r,f) and (r,f') are respective universal unfoldings, then Xf ~ Xf,.

+ x1 +r f
Proof. We have n' = ny where y € G. Let g=f(yxl):Rnr—Y——>-]Rn —> R

™ o
T T

®F _1_>_Rr
This induces M ———L—>~ * is a diffeomorphism because y is.
g
_—

Me

X
f And so X_ ~ X .
f g

R

"
b
]
X
(o]
n
3
=,
x
[
"
J<
’:’
X
b

Now g[Rn x 0 So (r,g) unfolds n’',
and (r,g) is a universal unfolding because (r,f) 1is, clearly. By Lemma

7.5, XBNXf,. Hence Xf'VXf,.

Theorem 7.8, If n € m2 of finite determinacy has a catastrophe germ Xf,
then the equivalence class of Xf depends only upon the equivalence class of

n. Moreover it is uniquely determined by the essential coordinates of n.
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Proof. Denote the equivalence class of Xf by [X X is independent of

e X

the choices of: n by Lemma 7.2, universal unfolding f by Lemma 7.5, r by

Lemma 7.6, and of n by Lemma 7.7. Lemma 7.2 shows that [X is uniquely

£l

determined by the essential coordinates (of n).

Corollary 7.9. 3 only 11 catastrophe germs if we restrict to those n of

codimension = 5,

Proof. If there are more than 2 essential coordinates of n, i.e. rank
n =n - 3, then Lemma 4.11 shows cod n > 5. So restrict to n <2. + n and

- n give the same Mf and hence the same Xf. So the (distinct) essential

coordinates giving distinct [Xf]'s are: x3, xa, xs. x6, x7, x3 + xyz,

x3 - xyz, x2y + ya, x3 + ya, ny + y5, xzy - y5. These are the 11.

Definition. If [Xf] is one of the 11 of Corollary 7.9 then [Xf} is called

an elementary catastrophe.

Corollary 7.10. If n has finite determinacy and (r,f) is a universal
unfolding of n, where r < 5, then [Xf] is an elementary catastrophe,

Proof. By Corollary 4.7 and the Reduction Lemma 4.9, n~q+p and p € m3.

Also Lemma 6.6 tells us that r > c = cod n, so that ¢ =5 and p 1is one

of the germs written out in the proof of Corollary 7.9 (cod p <5 and consult
Diagram 4.1). By Lemma 7.1 applied to p 3 a standard universal unfolding
(c,g) of p such that Xg is a germ RF, Q aﬁRC, 0. Now use Lemma 7.2 to
provide a universal unfolding (c¢,f') of n such that Xf, = Xg' By Lemma

7.6 Xf ~ Xf, x 1T7¢ = Xg x 177¢ ®%,0 - RY,0. Now [Xg] is an elementary
catastrophe by choice, and so im a certain obvious sense [Xf] is an elementary
catastrophe too. This is the same sense in which we said that “[Xf] is

independent of the choice of r by Lemma 7.6" in Theorem 7,8,
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CHAPTER 8. GLOBALISATION,

We shall first define the Whitney C* topology on the space of C”

functions R%TT + R, denoted by F.

k, potr Jk

Given f£: RP+r +R define a map f : R (where, recall,

n+r
J: = En/m§+l) which sends p € B o the k-jet at O of the function
Rn+r >R
w+ f(ptw).

Then given a function u: Rp+r *-R+ we define a basic neighborhood of

0 as VE ={f €eF: Vp € Rp+r,|fkp[ <up}. For f €F, Vﬁ(f) =

{g € F: ¥V p e RNT

,[fkp—gkpl < ypr 1is a basic open neighborhood of £f. These
form a base for a topology, called the Whitney Ck—topology. The topology with

a base of all such Vﬁ(f), Y k= 0, is called the Whitney C* topology. F will

be assumed to have this topology.

Theorem 8.1. If r =5, then 3 an open dense set F, € F such that if
f € F*, then ;f has only elementary catastrophes as singularities (and these
are already classified), and Mf is an r-manifold.
We shall need several lemmas to prove the theorem.
Given f ¢ F, e >0, and X C Rn+r’ define an open set, V:’X(f)
as {g € F: VY p € X, [fkp-gkpl < £}, so that € controls all partial

derivatives of order < k on X. It is open because it is the union of all

v‘:(f) for w: K™Tx > R, (0,6).

Definjtion. Let J be a manifold. A stratification Q of J 1is a

decomposition into a finite number of submanifolds {Qi} such that,
L aQi

(2) 1f z € Qj c BQi and a submanifold S of J 1is transverse

= 6; - Qi = the union of Qj of lower dimension.

to Qj at z, then S 1is transverse to Qi in a neighborhood of =z. (8.2)

Following the construction of the k-jet prolongation of an unfolding

(r,f) in Chapter 6, given f € F we let F be the induced map
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Rn+r N Jk

p = (x,y) = k-jet at 0 of the function R',0 R, 0
x' > f(xtx',y) - £(x,¥).
Given X C Rp+r we let FX = {f ¢ F: ¥V p € X, F is transversal to

Q at pl}, where Q is either a submanifold or a stratification of Jk.

Open Lemma 1. (OL1) If X C Rp+r is compact and f € Fx, then 3 a

neighborhood V§+§(f) c FX. (i.e. FX is Ck+1—open.)
»

Frocf. Given p € X, F is transversal to Q at p. By continuity and (8.2)
(if appropriate), F 1is transversal to Q in a neighborhood of p, in
particular in a compact neighborhood N of p. This remains true for all

sufficiently small changes of F and TF on N, and so for all sufficiently

small changes in fk+1 on N, Because N is compact, 3 ¢ > 0 such that
V:+§(f) c N, cover compact X by a finite number of such N,, and let

3

- K+l . -kl
& = min ei. Then ve,X(f) = gvs,N.(f) (UN. = X)

i 11
c ﬂVk+1N (£) relaxing controls
1 &Ny t Yi

N
OE
i :

Open Lemma 2. (OL2) Let X = UXi, a countable union of disjoint compact Xi

k+1

with neighborhoods Y Then FX is C  “-open.

1
Proof. Choose a C* bump function Bi: Rn+r »> [0,1], which takes values 1 on
Xi and 0 outside Yi’ for each i. Let Bo =1 - ‘Elﬁi. Given f € FX,
i=
Xy k+1 X
then £ € F ~, So 3 ¢, > 0 such that ¥ (f) € F1 (0L1)
€%y
- ® k+1 A yk+l
=8 + . c = X
Let Bo iileisi Then Vu (f) ilesi’xi(f) (p e, on i)
X
cnFt = X,

Density Lemma 3. (DL3) V p € BT and V£ ¢ F, 3 a compact meighborhood

N of p in R and 3 - neighborhoed V of f € F such that s

C®-dense in V.

Proof. Having chosen N and V we must show that VY g € V, 3 an arbitrarily
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C*-close h € FN. Now FN = {f € F: F is transversal to Q in N}, where
Q is (first) a submanifold of Jk. Given f 1let =z = F(0,0) and w.l.o.g.

p = (0,0).

Case 1. z € Q. This is hard,
Case 2, z € E—Q. This does not occur if Q is closed, but we need this

case where Q 1s one stratum of a stratification.

Case 3. z £ Q. This is trivial.

Q z )
2 Q N\
Case 1 Case 2 Case 3

Case 3. Pick N such that FN ™ Q, and V such that Y g € V, GN . Q. Then
N . - N

g € F', trivially. So V< F', and h =g will do.

Case 1. Let gq be the codimension of Q in Jk. Choose a product

neighborhood B of 2z in Jk and a projection 6: B >RY such that

8-10 =B Q. Now Jk is spanned by monomials in xl, ey xn. 0f these

choose Uys eoey uc1 spanning the q-plane transverse to Q at z. Let e

be the function R" =R

X =

LI 1

w,u,(x), where w, €R form w GRq,
- i i
i

and so e: R? x R® > R. As usual e induces E: RY X]Rn, 0 > Jk,O

(w,x) > k-jet of the

k
]Rn+r ,

function ]Rn,O -+ R,0. Then (F+E) : r? x 0->J,z

x' = ew(x+x') - ew(x). (w,x,y) » F(x,y) + E(w,x),
is convenient notation. Now choose a compact neighborhood W x N of 0 in

BRI x R™T such that (F+E) (WxN) € B.
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k
0 J
"r B
_ “g%\ z
(F+E) %,
W =x N

Choose a neighborhood V of f in F such that ¥ g €V,

(G+E) (WxN) € B. This is possible because W x N is compact and B 1is open.

Sublemma 1. The matrix of partial derivatives with respect to W at 0 of the

"+
composite map W x N,0 —SE—EA>'B,Z -—>¥Rq,0 is a nonsingular matrix.

Proof. (F+E)(w,0,0) = F(0) + E(w,0) = z + E(w,0).

E(w,0) 1is the k-jet at 0 of ®" -+ R

"

x' > ew(x') - ;6{05 = iglwiui(x').

q
So (F+E)(w,0,0) = z + X wou, which is in the g-plane transverse to Q at z
i=1

by construction. Hence 6(F+E) is transversal to 0 in rY,

Corollary. By choosing W, N, V sufficiently small, the matrix of partial deriva-
s (G+E) q
tives of the composition map ¢: W x N ——> B —>R> with respect to W 1is

nonsingular at (w,p) V (w,p) € WX N, V g € V.

Proof. By continuity from Sublemma 1.

Sublemma 2. (Implicit Function Theorem) Given wl x Nn+r >R?Y with the matrix
of partial derivatives of ¢ with respect to W nonsingular Y (w,p) € WX N,
then 3 a unique C° map ¥: N 5 w9 such that ¢_10 = graph ¢.
By Sard's Theorem choose a regular value w* of ¢, arbitrarily small.
Let ¢* be the map: Nn+t +rY

p = ¢(w*,p).
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If N = east, W = north,
r? = vertical, ¢ = height
above sea level, and ¢ =
coastline, then Sublemma 2

says that '3 a coastline.

Sublemma 3. ¢* is transversal to O.

Proof. Suppose ¢*p = 0. Let v = (wk,p), € graph ¢y C WX N as ¢v = 0.
T ¢
Consider Tv(w N) ——y—é-TO rY. TV¢ is surjective by the Corollary to Sublemma 1.
1"

"
Rg] x ]Rn+r ]Rq

Let K be the kernel of Tv¢, K = (TV¢)u10. Dim K = (gtmr) -~ ¢ = n+r, by

surjectivity.

w* -——-———y R

™
Because w* 1is a regular value of ¢, the map KT E_Rg « RAT _3_9-33 is

+ + +
surjective., So K" meets RV transversely; dim Kn+r nRM =

T, ¢
(ot+r) + (n+r) - (ntr+q) = n + r - q. Consider Tp(Nn+T) P 5 TOGRq).

"w "

Rp+r Rq
Kernel of Tp¢* = kernel of Tv¢ n mp+r = Kn+r n Rp+r’ and so is of dimension

n+ r - q. Hence Tp¢* is surjective, and p 1is a regular point of ¢*. Thus

¢* 1s tramsversal to O.
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We have chosen N and V. Choose now a bump function
+
B: T [0,1] such that B =1 on N, B =0 outside a compact neighborhood
of N, Given g € V, choose w* (dependent upon g), a regular value of ¢, w*

arbitrarily small, Define h: Bp+r

SR by hi(x,y) = g(x,y) + & whu, (0E(x,¥).
i=1 11

Then by Sublemma 3, 6H = ¢* dis transversal to 0 on N. So H is transversal

toc Q, and h € FN. Given an arbitrary G™-neighborhood Vﬁ(g), we can reduce the

partial derivatives of w*uf of order = £, below u, on a compact neighborhood of

N by making w* sufficiently small., So h € Vﬁ(g). h 1is arbitrarily C®-close

to g.

This completes Case 1 of DL3.

Case 2, z € QC 3Q"' = Q' - Q' where {Q} form a stratification. Given g € V
we must show 3 h such that H 1is transversal to both Q and Q' (and any other
incident strata) at the same time, on N. Given g, find h as in Case 1
arbitrarily C”-close such that H 1is transversal to Q on N. Automatically
by (8.2) H 1is tramsversal to Q' at all points in a compact neighborhood L
of z in B.

Choose a product neighborhood B' of Q' N (B-L), and a map

' -
8': B' >RY  such that o' 1

Q' in Jk. Find now h' arbitrarily C*-clese to h so that

0=Q"'N (B-L), where q' 1is the codimension of

(a) ©6H' remains transversal to all points of 0L, and
A}
(b) ©'H' becomes transversal to 0 in R> by Case 1 for Q'.

(s)

Then H' {s transversal to Q@ and Q' on N. By induction, H is

transversal to the stratification because there are only a finite number (s+l,

(s) ¢ ¥

say) of strata through =z, by (8.2). Then h is arbitrarily C”-close to

g €V,

Density Lemma 4. (DL4) If X ¢ B™'T  is compact, then =~ is C™dense in F.
Jensity Lemma & p s

Proof. Given f ¢ F, cover X by a finite number of Ni given by DL3., Let

vV = QVi. Then FNl is C®-open by OLl (because Ck+1—open) and is C®-dense (by
Ni X _ UN, Ny

DL3) in V,. So F ™ 4is c® open dense in V. Now F >F i =qF is C=
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X
open dense in V. So 28 is dense in V, i.e, V f € F, 3 V such that F
dense in V.

Therefore FX is dense.

Density Lemma 5. (DL5) Let X =U X, as in OL2, then FX is C*”-dense.

Proof. Given f €F and given a basic C®-neighborhood Vﬁ(f), we want

g € Vﬁ(f) N, Let {Bi} be as in OL2. For each i choose gy > 0 such that

h € v
SRS

of order = & of Bi on Yi). By DL4, choose fi e vt

Ei, i

o
i

. = = (1- +
Bof + iilsifi Then g = £ outside U Yi' Oon Yi’ g = (1 Bi)f Bifi

2

+ -£). -
f Bi(fi £) Now fi f € Ve.,Y.
i*ti
g = fi on Xi' But Fi is transversal to Q on Xi’ and so G 1is also

X.
transversal to Q on X,. Therefore g € nFto X,

So g € Vi(f) n i as required.

is

= Bih € Vﬁ. (This is possible by the boundedness of the derivatives

- £Hn in. Define

by choice, so Bi(fi~f) € Vﬁ. Meanwhile

The result of DL5 can also be proved by showing that F with the

Whitney C® topology is a Baire space, but the proof is longer.

n+r
Lemma 6. X is Ck+l“open and C*-dense in F.

Proof. Choose X, X' each as in OL2 such that

ntr '
BT o xUx'. Then B =Fn X' each

Ck+l—open and C"-dense, by OL2 and DL5 respectively.

Proof of Theorem 8.1, We describe the stratification Q of J7 resulting
from the classification of orbits in 17 in Chapter 4.

(a) the open subspace J7 - I7,

() n+ 1 orbits of jets of stable germs in m2 of codimension 0 in 17
(c) the orbits of jets of germs in m2 of codimension 1, 2, 3, 4 and 5

(d) the strata of the algebraic variety of jets of germs in m2 of codimension

> 6 in I7.

These come directly from Diagram 4.1.

Because XZ, i.e. (d), 1s of codimension n + 6 and we are not

)

in

interested in its internal structure, we shall let Q be the stratification (a),

I7

>
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(®), (c) of AL E;. The strata are the FZ for ¢=0,1, 2, 3, 4 and 5,

together with Jl - 0 (this last making J7 - ZZ, rather than I7 - ZZ).

Lemma 7. Q satisfies (8,2) (and hence is a stratification).

Let Fo = {f ¢ F1 F misses EZ}, i.e, where F 1is transversal to

Zg if r =<5 (F maps RP+T into J7). By general position, Fo is Co—open

8 ntr
(and hence C -open) and (C”-dense. Let F, = Fo n = , then F, {f € F: F

is transversal to Q and ZZ}, and is C8—open and C®-dense, using Lemma 6.

Suppose f € F_. Then F is transversal to m2/m8 = I7, since 17

7 7
6 I

dimension r. (I7 is of codimension n in J7). Now F—l(I7) is the set of

is the union of strata of Q and Z,. So F—l( ) is of codimension =n, and of

points (x,y) in Rp+r such that the l-jet of x' = f(x+x',y) - f(x,y) is zero,

i.e, such that EE—-(x,y) = ... = gi-(x,y) = 0. So F—l(I7) is precisely M
Bxl an f

and Mf is an r-manifold. Suppose that Xf: Mf-* R" has a singularity at
(x,y). Let n be the germ at (x,y) of f]Rn xy. W.l.o.g. (x,y) = (0,0), so

2
n €m . The germ of f at (0,0) 1s a 7-transversal unfolding of n, because

£ € F* and so F 4s transversal to the orbit (j7n)G7, contained in some stratum.

Lemma 8. If (r,f) 1is a 7-transversal unfolding of n € m2, and r = 5, then

(r,f) 1is a universal unfolding.

Proof. By Lemma 6.4, m = A + Vf + m8. (A= A(m)). So dim m/(A+m8) < dim V

r =5, using (6.3). In the notation of Theorem 3.3, T(jsn) < 5. But

<
PR

cod n = T(jan) =5, by (3.5), and so by Lemma 3.1, det n < 7, and we can apply
Theorem 6.10 to show that (r,f) 1is universal.
By Corollary 7.10 we now know that if Xf is the germ at (0,0)

of Xf, then [Xf] is an elementary catastrophe.

So the only singularities of Xf are elementary catastrophes.

Proof of Lemma 7. (Which we have used to complete Theorem 8.1). Q has a finite

number of strata, each of which is a submanifold by Corollary 4.3. (There are

in fact 7 strata.) Condition (1) of (8.2) follows from Corollary 3.6

7

since each ZZ is closed (Theorem 3.3). ©Note that f; now refers to the closure
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in J7 - EZ.

Condition (2): Let Ql’ Q2 be strata, z; € Ql < 3Q2, and S a submanifold of

J7 - Eg transverse to Ql at Zq- Then S 1is transverse to zlG7 at zl.
Write a for the C* map J7 > Cm(G7,J7). a(zl) is

z + the map taking y to 2z oy.
now transversal to S in a neighborhood U of the identity e. Spanning, and
hence tramsversality, is an open property, so 3 an open neighborhood V of

a(zl) in C (G7,J7) and a neighborhood U1 of e (perhaps smaller than U) so

that B € V implies B 1is tramsversal to S in Ul. o l(V) is open and

contains z in

1 and if =z ¢ a_l(V), a(z) is transversal to S in U

l;
particular zG7 is transverse to S at z. But Q2 is the finite union of

such orbits zG7. Hence S 1is transverse to Q2 in a—l(V), a neighborhood of

Zl-

Thus condition (2) is satisfied, completing the proof of Lemma 7.

CHAPTER 9. STABILITY.

Given f € F_, let Xf: M, » R’ be induced by projection. (See

f
Chapter 1) We have to show that Xf is locally stable at all points of M

*’
£
Definition. X_ 1is locally stable at (xo,yo) € Mf if given a neighborhood N of

£
(xo,yo) in Igr+r, 3 a neighborhood V of f in F,, such that given g €V,

3 (xl,yl) in NN Mg such that Xf at (xo,yo) is locally equivalent to Xg
at  (x;,y;).

Let £, Xg denote the germs of f, X

g Bt (xo,yo) and g, Xé the

germs of g, Xg at (Xl’yl)° Then Xf’ Xé agrees with the notation in Chapter 7,

and we also have that
(9.1) X§ ~ Xé o Xf at (xo,yo) is locally equivalent to Xg at (xl,yl).

Theorem 9.2, If r =<5 and f € F then Xf is locally stable at each point

%

of Mf.
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Proof. £ 1induces F: Rp+r -+ J7 as at the beginning of Chapter 8. Let (xo,yo)

be in Mf, and F(xo,yo) =z We suppose we are given a neighborhood N of

o
(xo,yo). Since f € F,, F is transversal to ZoG7 at z 3 hence we can choose
a disc DY with centre (xo,yo) contained in N, where q 1is the codimension of
zOG7 in J', whose image under F intersects zoG7 transversely at L and so
that FIDq is an embedding. F(Dq) will then have intersection number 1 with
zoG7. If F 1is perturbed slightly to G, G(Dq) will still be a gq-disc whose
Intersection number with zoG7 is still 1. TI.e. 3 an open neighborhood V0

of f in F with this property for g € V. Write V =V. NF,.Given g €V,
G 1s transversal to zoG7 and we may choose (xl,yl) € D% such that

- _ q 7 .
G(xl’yl) zy G(d*) N ZOG . Then zy and z_ are in the same orbit and are

right equivalent as germs RP,O -+ R,0.
Let fo(x,y) = f(xo+x,yo+y) - f(xo,yo) and gl(x,y) = g(xl+x,yl+y)—
: ntr _ .7 n

g(xl,yl) define fo and 8yt R  ,0 > R,0. Then z, =] (fO]R. x0) and

+
zy = j7(21|Ep x(0). Note that FGRn+r) is the same point-set as FOGRn r) and so

Fo is transversal to z°G7 and (r,fo) is a k-transversal unfolding of the germ

z : so we can apply Lemma 8 in Chapter 8 (similarly for él). As r =5 the

proof of this lemma gives that z, (and so also 2z is finitely determined as

1)
a germ. The result of the same lemma tells us that Eo and él are also

universal unfoldings of germs z,» 2 respectively, Now apply Lemma 7.7 which

says Xz ~ X~  (germs at (0,0) of X_ ,X ).
£, & £

Now M. is merely a translate of M_ : M_=M_ + (xo,yo).

£ fo f fo
And so
Xf(X,Y) = Xfo(x_x(),y_yo) + yo'
Then
-(x_,y)
M, (x,y,)) ————"—> M ,(0,0)
o
fo leo commutes, so that XE N'XEO (by (9.1)).
-y
Rr’yo o R%,0
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Similarly X, ~ X, ,
g g

1
Hence Xz ~ Xz ~ X~ ~ X». This completes Theorem 9.2.
f fo gl g
-1,.7 7 7
- c
(Observe that (xo,yo) € Mf and Mf F "(I') so that z, and ZoG 1°.
7 o o-1,.7 )
Then z) €1 and (xl,yl) EMg =G (1), i.e. (xl,yl) €ENN Mg as required.)

Remark. This is a result about local stability. It would be interesting and

useful to have a similar global stability result.
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