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INTRODUCTION

Our objective is to understand the geornetry of the double-cusp
catastrophe, or in other words the 8-dimensional unfolding of the germ
F;RE—R given by f = ><4+y4. Now 8 dimensions are difficult to visualise and we
only partially achieve this objective. So the question arises, why bother with
this particular germ? There are several reasons both mathematical and
scientific, as follows.

(1) Modality. The double-cusp is the simplest non-simple germ.
More precisely any germ in two variables of codimension less than 8 is
simple in the sense of Arnold [2,3], but the double-cusp is unimodal.
Therefore a study of its geometry will help to give insight into the phenomenon
of modality.

(ii) Compactnesls. The double-cusp is compact , in the sense that
the sets f < constant are compact. In Arnold's notation [3,4], the double

cusp belongs to the family X and in this family there are three real types

9!
of germ, according as to whether the germ has 0,2 or 4 real roots. For

’ 4 4 4 4 22
example representatives of the three types are x +y , x -y4 and x +y4 - BX Y
respectively, and only the first of these is compact.

Compact germs play an important role in applications [97, because

any perturbation of a compact germ has a minimum; therefore if minima
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represent the stable eguiiibria of some system, then Tor eadh pOGIE S 1

unfolding space there exists a stable state OF fhe syster By conmemss
=onsider: the fold-catastrophe xs_ which is not caompact; this temds o e =0
incomplete rrodel of any systern because at the fold potnt winate e
sguilibrium breaks down, there is a catastrophic jump, but the s does

not tell us where the system will jump to. The way to compactify the Fold

4
is to add a terrm X 5 in other words the fold-catastrophe can be

a section of the cusp-catastrophe, which is compact., In this sBense we may

call the cusp the compactification of the fold. Similarly the double-cusp is

important because it is the cornpactification of each of the three umbilics, the
hyperbolic ><3_+y3, the elliptic x3—3xy2, and the parabolic x-gw—f'.

(iit) Coupling. The commonest catastrophe in applications is the
cusp, and in some applications two cusps appear, both depending upon the
same parameters. In such cases the double-cusp (or one of its non-compact

partners) describes the generic way that the two cusps can be coupled together,

‘oF can intepfere with one another, A study of the deomest

give a full understanding of such coupling and interferancs
{iv) Applications. Samples of the types of application i which

the double-cusp appears are as follows. In economies [8] growih and

inflation can sach be rnodelled by a cusp, depending won Uhe sams o
parameters such as devaluatiorn, deflation, etc,, and the problem is to see how
they are coupled, so that one can be cured without harming the other., In
linguistics Thom [11,12] uses a compact unfolding of the parabolic umbilic

to model basic sentences, and is therefore implicitly using the double—-cusp; the
four nouns of a basic sentence are represented by the maximal set of 4 minima
appearing in the unfolding. In brain-modelling [18] compact germs in

2 variables may be important because the cortex is a 2-dimensional sheet.
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In developmental biology if an umbilic appears in the interior of an embryo
then, since the embryo continues to exist, the compactification is implicit, and
so there should be an accompanying sequence of catastrophes governed by a
section of the double-cusp.

In structural engineering [13] the coalescence of two stable
post-buckling modes, each governed by a cusp, can generate a highly unstable
compound buckling and associated imperfection-sensitivity, governed by a
double-cusp. For example this happens in a model due to Augusti® [5,13
Figure 100], consisting of a leaded vertical strut supported at its pinned end
by two rotational springs at right-angles, when the strengths of the springs is
allowed to coincide. Here the double-cusp is the non-compact X4-+-y4—-5x2y2

with the boundary of stable equilibria representing the failure locus,

CONTENTS
The paper is divided into three sections

1. The umbilic bracelet.

2. Catastrophe theory.

3. The double-cusp.
In Section 1 we describe the geometry of the discriminant of the real cubic.
In Section 2 we establish a new form for the catastrophe map associated with
a germ, and show how its singularities refine the canonical stratification of a
jet space, which is independent of the unfolding. The new form yields new
equations for the cuspoids and umbilics, which help to give further insight into
the relationship between their geometries. In Section 3 we apply the results
of the two previous sections to explore the geometry of the double-cusp. Other

mathematical references containing information about the double-cusp are

[1,7,10,17].

*I am indebted to Michael Thompson for drawing my attention to Augusti's
example, and to Tim Poston for pointing out that it was a double-cusp.
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SECTION 1 : THE UMBILIC BRACELET,

Since the double—cusp is a quartic form, its unfolding involves
the umbilics, namely the cubic forms. Therefore we begin by studying the

- . . 4 . . ) - .
stratification of the space R of real cubic forms in 2 wvariables. 'he point

; 4
(a,b,c,d) € R corresponds to the form

3

3 2 2 3
f=ax + bxy+ cxy + dy
The stratification is given by general linear actions as follows. Let
G = GL(2,R) be the general linear group of real invertible 2 x 2 matrices.
The left-action of G on the variables by matrix multiplication induces a right—
; 4 y : 4 )
action of G on R, as follows : given f € R , g € G, define fg by
(Fgyv = flgw), where v = (

'»\f‘) L

Define the stratum containing f to be the G-orbit, FG. The following lemma is
classical .

. 4 .
Lemma 1. There are 5 strata in R, characterised by the type of

roots.
Stratum Dim Example Type of roots,
3 3
H, hyperbolic umbilics 4 R Y 2 complex, 1 real
S _— 3 3 . L.
E, elliptic umbilics <+ X = 38xy 3 real distinct
P, parabolic umbilics 3 Xy 3 real, 2 equal
, 3 -

>, exceptional 2 x 3 real equal
O, the origin 0 0 indeterminate.

Proof. Real linear action preserves the type of roots. Conversely if
f,f' have roots of the same type then there is a real projective map sending

roots of f into f', and hence g € G such that f' = fg.
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Remark. We call X the exceptional stratum because it underlies the
exceptional singularities ES’ E?, EB in Arnold's notation [2]. See also

Lemma 13 below.

Discriminant, Define the discriminant D = P |y X | 0, the union of
the non-open strata. The equation of D is given by eliminating x,y from
f=23f/ax =0

4ac® + b2d) + 27a°d” - b2c? - 18abed = O,
However this is not much help in understanding the geometry, and so we shall

pursue a different tack.

Lemma 2. The stratification of R is conical with vertex 0.

: 3
Proof. If g = scalar multiplication by ), then fg = ) f. Hence the ray

through f is contained in the stratum fG.

Remark. The importance of Lemma 2 is that to describe the
stratification of FQA it suffices to describe the induced stratification on the unit
sphere S3 i R4, and then take the cone on the latter. We could, further,
identify 53 antipodally and describe the induced stratification of projective space,
but we do not do this for two reasons. Firstly, when we come to apply the
results to catastrophe theory, antipodal identification confuses maxima and
minima, which are important to distinguish, Secondly our immediate aim is
to visualise the stratification, and although the projective language is attractive
(see Lemma 16), it is slanted towards the algebraic rather than the topological
point of view, and consequently can hide some of the geometry. Therefore we

; o ; 3 > : I 3 .
shall consider the stratification of S, and visualise it in R~ by removing a

point "at infinity."
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Figure 1.
Recall that a triangular hypocycloid

is the locus of a point on a circle of radius 1
rolling inside a circle of radius 3 (see Figure 1).

It has 3 cusps and 3 concave sides.

3
Theorern 1. The induced stratification of S~ is in the shape of a

br*acelet*, with a triangular hypocycloid section that rotates % twist going once

3
round the bracelet, The strata H, E, P, X meet S” in the outside, inside,

surface, and cusped edge of the bracelet, respectively.

Figure 2.

Remark 1. Since the discriminant is classical, this picture was

probably known in the last century, but 1 have not found a reference to it.

: . 3 y :
In Figure 2 we have sketched the bracelet in R, assuming that the point at
= iR g 3 - ;
infinity which has been removed from s was a hyperbolic point. If an
elliptic point had been removed the cusped edge would point inwards rather than

) y - T . 3 .

outwards. The simplest way to project S minus a point onto R~ is by
stereographic projection, but this is geometrically very distorting and in

particular badly distorts the hypocycloidal sections. Hence in Figure 2 we

*The name "bracelet" arose when explaining the shape to my wife, who is a
jeweller. Subsequently Tim Poston carved beautiful wooden bracelets of this
shape.
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have drawn a differentiably equivalent image, that preserves the concave

curvature of the sections. The geometry is clarified by Lemma 6 below.

Remark 2. In his book [11, p99] Thom suggests that elliptic states
are more fragile than hyperbolic (and deduces that males are mare fragile
than females), because elliptic states are limited and always followed by
hyperbolic breaking. His arguement depends upon the stratification of real
quadratic forms in 2 variables (see Lemma 10), and the observation that in
the real projective plane elliptic forms correspond to the interior of a conic,
and henc;.- contain no projective lines. However the applications refer to the
umbilics, in other words to cubic forms rather than guadratic forms; and
we show in Lemma 5 that there are circles (corresponding to projective lines)
both inside and outside the bracelet. Therefore from the qualitative point of
view elliptic states are é\s robust as hyperbolic states, and any comparison
between their fragilities would have to be quantitative depending upon sorne

measure of the strata,

The circle group., To prove Theorem 1 it is cohvenient to use the

circle group (which is the maximal torus of G) namely

1
S = Soe) = {ge; 0 = & < 2n}, where

_ fcosg —sins)
ge sing cosf "
In turn, the circle group Suggests the convenience of a complex variable

z = x + iy, because then ge(z) = elez.

Lemma 3. With complex coefficients (a,B) € (32, the generic real

cubic form can be written

= .R(azs + ,8222).
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Proof. Writing a = o, +ia,, B = 8
e =

+ ig_, th
1 igys then

1
2 2 3 3 2 2 ;
F = 0.1(>< - 8xy ) + ag(—Sx v+ y )+ 31@(’ + xy ) + 52(~xdy - ys)

3 2 2 3
=: A + (-3a_ - + (= + - 8
G By ( > BE,)X y + (-8a, 31)><y + <02 Hz)y 7

? — : 4
which is a permissible change of coordinates for R from (a,b,c,d) because

the matrix

/—\0 danotes the wnit circle in A, given by 'I--_‘r_]I =1, g = 0.

B . denotes the
Q

unit circle in B, given by a = 0, |;] =1,

We may write

i = ; . .
Lemma 4. S’ acts orthogonally on A x B by rotating A thrice and B

ance,
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G-orbits. AO contains the point (g,8) = (1,0), which corresponds to the form

3 2 _
x — B8xy , which is in E, and therefore A c E

Similary B _ contains (0.1)
0 W Ut

corresponding to ><:3 + xy2 in H.

In Figure 2 AO is the horizontal core of the bracelet, and F_-'.[._\J is
the vertical axis of the bracelet (together with the point at infinity). Therefore
AO’ BO represent projective lines in E, H confirming Remark 2 above.

Let T = AO x B, the solid torus given by |a] = 1. Radial
projection from the origin gives a diffeormorphism 53 - E!O-) T. This is
illustrated in Figure 3, where B is drawn symbolically as 1—dimensional rather
than 2-dimensional, and BO as a point-pair rather than a circle. By Lemma 5
the bracelet does not meet BO, and so is projected diffeomorphically into T.

Therefore to prove the theorem it suffices to prove the existence of the

3
bracelet in T, rather than S .

Figure 3.
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Lemma 6. D meets the plane a = 1 in the triangular hypocycloid

i -2i
B = Qeltp + e ep, 0 < p < 217 (see Figure 1).

3
Proof. If (1,8) € D, then f =R(z + 5222) has a double root in x :y.

ig
Putting x = el , then
518 . ; i
f = %le Yy 9—818 + _eele + ge le)

has a double root in 8. Multiplying by ele,
4ig -21i8
e

¥e + 6218

+ B8 + 8)

also has a double root in 6. Therefore the derivative vanishes,
. 4ig . -2if _ 2i8
ie - le

2 i + ige = 0.

.a _4.
B = —2921 + e 9 -
Putting 28 = g - 7 gives the required formula, Geometrically the formula

represents the locus of a point on a circle of radius 1 rolling inside a circle

of radius 3, namely the hypocycloid,

Lemma 7. X meets o = 1 in the 3 cusp points.

Proof. With a triple root, the second derivative also wvanishes.
Therefore

48 o sia'P - a2y,
do

eth = T,w,wz, the cube roots of 1.

3 = 8,3w,3w2, the three cusp points,

1
Proof of Theorem 1. Apply the first third of the circle group S , for

values 0 = 8 = 2?11 . By Lemma 4 this rotates the circle AD once, and gives

the plane B a Y-twist, Therefore it isotops the plane a = 1 once round the

!
I
i
|
|
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torus T, and back onto itself with a %—twist. Therefore it isotops the
hypocycloid once round and back onto itself with a %~twist, to form the
bracelet shown in Figure 2, Hence the strata P and X meet T in the surface
and cusped edge of the bracelet. Meanwhile the strata H and E meet in T in
the exterior and interior by Lemma 5. This completes the proof of

Theorem 1.

Corollary. The stratification of R4 can be written parametrically as
follows. Let
(0,8) = 20, ue' O + %) 20,028, v<on.
Then the strata are given by
H o s, g st

E & %50 & % & 1

Remark 3, Let G+ denote the subgroup of G of index 2 consisting of

matrices with positive determinant (G is the identity component). Then
G+—0rbits in R4 equal the G-orbits. In particular G+ acts freely on H,and
with index 3 on E. This is related to the geometric fact that there is only one
tangent to the hypocycloid from an exterior point, but 3 from an interior

point. It also underlies some of the qualitative differences between hyperbolic
and elliptic umbilics, for example the bifurcation set of the former has one
cusped edge, and the latter three (see Figures 6, 7, 8, 10 and Lemmas 12,

17
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SECTION 2 : CATASTROPHE THEORY.

We recall the construction of the catastrophe map associated
with a determinate germ of a function [11,16]. Let T be the ring of
germs of c®—functions Rn -+ R, and m the maximal ideal. Given f € a 5

define the Jacobian ideal J of f by J = (t“,...,f where fi = al’/axi and

njs ?
(x‘i""’xn) are coordinates for R". Note that J is independent of choice of
coordinates., Call f determinate if o Mq, some q.

k
Let f ba a fixed determinate germ, and suppose f € m , k = 3.

We shall rostly assume e is not necessary, Define the

*Unfolding & the codimension of f to be

dim(m/.))u Choose & Pright inverse e:n/d = m of the pmjection o= mlde
Define the = of f associated with ¢ to be the map germ

iz =l 2 - .

----- o mAd - Ry glven by

Fis,o) = ot + (go)x, X € Rn, c € m/d
Note that the unfolding is not unigue, since it depends upon the choice of g,

but is uniquely determired by & in a coordinate-free way. Define the

catastrophe manifold M R" % m/J by the equations Fy= e = Fn = 0. Note

that the determinacy of f ensures that these equations are independent, and so
M is a manifold (or more precisely the germ of a manifold) of the same

dimension as m/J. Define the catastrophe map

X.f‘M = m/d
: s n .
to be the rmap geimn induced by the projection R % m/J > m/Jd. Let sing Xg
denote the zet of singutarities of ., and define the bifurcation set to be
1
By IMatie sy 161 our definition of unfolding is universal, but not
minimal if However the particular germs that we shall be considering
here will Aeous of guasi-homogenaous, in which case f € J, and

soour unfaid hath universal and minimal.
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):f(sing Xf)- Let strat %e dencte the stratification of M induced by sing P
We give a precise definition of strat Y below in terms of orbits. For the
moment observe that strat X¢ is simpler than the bifurcation set, because the
former does not contain self-intersections whereas the latter does (see
Figure & for example).

For applications it is important to understand the geometry
of Xps and in particular the geometry of the bifurcation set. This is what we
should like to know in the case of the double-cusp, but as yet this problem is
unsolved. The problem is made additionally awkward by the non-uniqueness
of the bifurcation set, since it depends upon the choice of g, and is unique
only up to diffeomorphism. Since this problem is unsolved, we tackle here
the simpler problem of studying sing Xe and strat X Here the geometry is
made slightly awkward by the fact that M is a non=linear manifold,

Now in applications the non-linearity of M is important, because
M frequently represents a graph between cause and effect, and the very
essence of catastrophe theory is the multivaluedness of this graph over the
unfolding space, together with the catastrophic jumps that occur parallel to
Rn, from fold points of M into other sheets of M. However, if we are to try
and get an initial grip upon the geometry of strat X it is useful to replace
M by a linear manifold. This is one of the purposes of Theorem 2. The
theorem also shows that strat Y is a substratification of a canonical
stratification, which is, unlike the bifurcation set, independent of choice of
unfolding., Surprisingly the canonical stratification is ewven independent of f,

and depends only upon the pair of integers n,k, as follows.

Definition of canonical stratification. Let ‘9 be the group of germs

at 0 of Cw—diffeomor‘phisms Rn,o - R",o. Then -9 acts on the right of 6
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by composition, leaving m invariant, and hence induces actions upon the

: 53 : . i, k 2
powers of the maximal ideal m and the jet spaces mJ/m , for j < k.

R 2 Kk i,k i k
Define the canonical stratifications N of rnk and N 1R of m’/m= to be the sets

of %—orbits.

Definition of strat y. Define a map germ q:,:Rn x m/J = m by

-

&X,C)g = F{X‘FP‘:,C) = F(X,C)

. . A -1 1
where X,E & R, c& m/J and F is the unfolding of f. Let o M denote the

pull-back under ¢ oF the canonical stratification N of m. Define
1
Erap o = Vo --, }
2 *
L P " T I . i . e - o~ o
Note that although N ois a global stratification of m, @ IS only a map—germ,
and so sk —germ of the manifold-germ M. We
‘ Fimition bv the following lemma.
Lemma 8.
-] 2
(M =g m_
o -1 2
(il) Strat pe = N
(iil) Sing ¥, is given by the vanishing of the Hessian of F.
(iv) Singularities in the same stratum are equivalent.
Proof. By Taylor expansion
wx,c)E = EF'(x,e) + + ..
where primes denote (10 rensor notation) the depivatives with respect to X
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St D -
Hence M = ¢ m , and strat X is the pull-back of the canonical stratification

2 2
N™ of m~. The Hessian H of F is given by H = det F" = |Fij1. Let M be
L
given by Fi =0, Then M = M1 0 wes T Mn' The normal to Mi is
aF; afF,
(Eacguauy s, ae—= uoupe——uy
1, Ed 2 4 : ?
i in aC‘I .*-v,cp

where (r:1 ,...,cp) are coordinates for m/J. ' Therefore
(x,c) € sing degw) q a tangent of M killed by Txf
&> av # 0, v e R, such that ) c ™™
<> av £ 0, Vi, (Y < ™,
<> v # 0, Yis @ L normal M,
<> av £ 0, F'v = 0
<> H =0,

Finally suppose (x,c) € sing Wg+ Then g(x,c) is the local germ of F at (x,c)
in the R" direction, and by Mather's theory [ 16, Chapter 7] the stratumn of
this germ determines the equivalence class of the singularity of X¢ at (x,c).

This completes the proof of Lemma 8.

Remark. Note that the converse to (iv) is not true : equivalent
singularities do not necessarily lie in the same stratum. For exarple generic
maxima and minima of F lie in distinct open strata of NQ, and hence pull back
into distinct open strata of M, although, as regular points of Xg» they are
trivially equivalent. It is important for applications to keep maxima and

minima distinct,

We are now ready to state the theorem. Recall our original assumption

-1
f e Mk, k = 3. Therefore J c r-nk , and mJ c mk = m2. Let m denote the

projection
2 2 k
mm /md = m/m°
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2,k A s ; =
let N =N ’" denote the canonical stratification of mg/'mk, and let m 1N denote

the pull—back of N under 1.

Theorem 2. The catastrophe map Yg is equivalent to a map

}::mg/mJ - m/SJ

=
such that strat y refines m N,

; : i 3 -1 y
Here refines means that strat y is a substratification of m N, in other words
’ : . -1 3
each stratum of strat y is contained in a stratum of m N, Note that N is

independent of f, but the refinement in general depends upon both f and the

unfolding F (although up to diffeomorphism it is independent of F). The

simplest example of refinement can be seen below in the case of the hyperbolic
o - -1 ' . . 3

and elliptic umbilics : here m N is given by a cone in R~ (see Lemma 10),

and the refinements are given by adding respectively one or three generators

of the cone (see Examples 3 and 4).

Proof of theorem. Let 8 denote the composition

m/mdJ

v

)
R x m/J > m

where 8 denotes projection. We shall show that § is a diffeomorphism germ
by proving the derivative Tg is an isomorphism, as follows. From the

definition of ¢ and F,

1]

@(x,0)E = F(x+E,0) - F(x,0)
= f(x+E) - fx
= Ef'x + ‘éigf"x G TN
in Taylor expansion. Therefore Tg maps R x 0 onto the subspace of m

spanned by \'1 Stwiansipl Now the determinacy of f ensures that f1 A ’fn are

n

linearly independent modulo mdJ, and, furthermore, span J/mdJ [18, Lemma 3.8].
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Therefore Tg maps Rn x 0 isomorphically onto J/mJ. Mearnwhile

w0,c) = f + ge.
Therefore

Te(0 x m/J) = Te(m/J).
Now Te maps m/J isomorphically onto a complement of J in m, because g is
a right inverse of the projection m - m/J. Therefore T maps 0 x m/J
isomorphically onto this sarme complement, and hence T8& maps 0 x m/J
isomorphically onto a complement of J/mdJ in m/md. We have shown that T
maps Rn x 0, 0 x m/J isomorphically onto complementary subspaces of m/rJ.
Hence T8 is an isomorphism. Herce 8 is a diffeomorphism germ. By
Lemma 8, M = cp_TmQ = 8—1(m2/m,.1). Therefore 8 |M:M - m2/r'nJ is a
diffeomorphism germ, and the map required by the theorem is given by

composition y = xf(e !M)_q:

b W
m/J
Let 112 = rm_[. Then we have compositions
g
3 m
L
k
M > e 7 mg/md ——-—-——--p-mgz’m
@ m b

By Lemma 8,
strat y_ = o NZ = cp_1(ng n N3,
Therefore
=1 2 2
strat y = g(strat yf) = Bp (pM N N7y = ﬁf(gpM n N7,
because M, |(pM is a diffeomorphism germ. Now 1. commutes with the action

2
2 . -1 2 . -3
of %, s and so N refines m, N. Therefore oM N N° refines s N. Therefore
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2
r,1{EJM n N refines "1"'Tn N = 'N. This completes the proof of the theorem,

Indeterminate strata. Call a stratum of N determinate if the germs

in the jets of that stratum are determinate, and call it indeterminate

otherwise. Let N* denote the subspace of indeterminate strata. Then N*

has codimension k — 2 inm /m In the theorem the refinement is limited

to m NF, and so

2

-1
strat y = ™ N, modulo codim k -

is no refinement with the cuspoids (n = 1), but there is with

the u 5 = ee |
sz ; . ;o
Let g = dim(m /md). If g =0 then m= 1, and 11 N = N,
as in th he and elliptic and hyperbolic urmbilics. fg>0
then | e 2 reasons for g > 0
(i) f not homoge 1 for the parabolic
; 2 4 ;
umbilic X vy + ¥y , because it 15 not S—determinate.
(i1) f has modality > O (see [3,4]) for example o = 1 for
4 ! 2.2
double—cusp x + y , because X Yy £ md.
o e s SRS epneg
Toginy B em—=nte (r + 0
e I nt(k=1)! FYL }
]
Proof, Codim T = dim (m" /mJ), by determinacy of T,
o K - 2, georers by .
fim(E/m ) - f_'!l-’n:\‘i /) + dim{m /md),
because £ X m DM 2 mM ), which gives the required formula by counting

mionomiials.
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Example 1. The cusp, A3.

Since this is a familiar example, we give the formulae in detail, in order to
illustrate the theorem. The cusp catastrophe has symbol A3 in Arnold's
. 4 :
notation [27] and germ x , or the equivalent; for convenience of computation we
1.4 3 i
choose the germ f = X¥x , Heren =1, k= 4, J=m , and therefore
mJ=m , o =0, codim f = 2. Choose for the unfolding space m/J the base
2 ; ;
{4x~ ,x} (regarded as 2-jets) and coordinates (u,v). Therefore a point ¢ & m/.J
can be written
2
c = (u,v) = Bux + vx.
: 3 2
Choose s:m/J —» m by reinterpreting x ,x as germs rather than 2-jets. Then
the unfolding F:R x m/J - R is given by
17,8 L) &
Fixzu,v) = Bx  + Bux + wx,
The induced map g:R x m/J — m is given by

EF' + KECFT 4 ...

(U, Vv)E

3 2. .2 3
E(x Huxcty) + ¥ET@Bx +u) + £ x HE

il

The composition 8 = R x m/J - m/mJ is given by
3 2 3
B(x,u,v)E = E(x +uxkv) + BE [3x2+u‘) * §“><,

2 8 . ¢

where E,E ,E are reinterpreted as 3-jets rather than germs. The
_— 2 y i

restriction &|M:M - m~/mJ is given by
} 4. 8 3
; (8 |MXxu,v)E = %E (3x +u) + & X.

2 2 3 z "
Choose for m /mdJ the base {g ,E } and coordinates (a,b). Then 8|M is

given by
i a = %(8x2+u)
b = x
Therefore (G|M)_1 is given by
% =b
u=2a-8x2=2a—3b2

v=—ux—x3=—2ab+2b3 %
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2
Therefore the catastrophe map y:m /mJ = m/J is given by

u 2a - 31‘32

3
v = =2ab + 2b

This has Jacoblan

alu,v) _ 2 —-6b -
3(a,b) -2b —2a+6b2 8

Therefore sing y is the b-axis, a = 0. The canonical stratification N of

4 i
mg/m comprises 4 strata :

minima a >0
maxima a<0

fold a=0,b#0
cusp™ a=>b =0,

The only indeterminate stratum is the last (which is why we have starred the

word cusp), because codim N* = k = 2 = 2, and so dim N* = 0. Therefore
4

since 7 'N = N, no refinement is possible. Therefore strat y = N. In

Figure 4 the stratifications are shown by thick lines.

Figure 4.
6 |M
Xe
m/md y m/J
fold ga X ; x
cusp 52 ! —‘;5:2_# |
max m.in
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Example 2. The cuspoid, Ak.

In Arnold's notation [ 2] the kth cuspoid is Ak+1 , with germ xk+2, and
codimension k. As in the cusp, strat y = N and the stratification is given by
a flag of linear subspaces, with one stratum in each odd, and two strata in
each even codimension (except when k is even the origin is the only stratum
of codimension k). This completes the case n = 1, and we now pass to

n>1,

k 1 ; :
Homogeneous forms. The jet space m /mk+ can be identified with the

space of real homogeneous forms of degree k in n variables. The ‘g—action
in this case reduces G-action, where G = GL(n,R) denotes the general linear
group, because the non-linear action of % is quotiented out, Therefore the
; = % . k, kit —_— ; ;
canonical stratification of m /m coincides with that induced by G. In
particular when n = 2, k = 3 it is determined by the umbilic bracelet - which
is why we proved Theorerm 1. We now turn to the simpler case n = 2, k = 2
of gquadratic forms in two variables :
2 2

g = ax + 2bxy + cy .
Real quadratic forms are classified linearly by rank and signature, and
therefore the stratification is determined by the discriminant cone C, given by

ac = be. We can therefore state without proof :

Lemma 10. When n = 2 the canonical stratification N of quadratic

3 . s
forms m?/m has 6 strata, with indeterminate subspace N* equal to the

discriminant cone C.,
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Corank MName Dim Example Formula
teprallis:
. 2 2
minima 3 x + vy ac > bg, a>0
. 2 2 2
o maxima 3 - =y ac >b , a<?0
2 2
saddles 3 x =Y ac < b2
2
C+ 2 x ab=b2,a+c>0
1 folas™ 5 5
C_ 2 -x ac=b ;atc<U
2 umbilic® 0 ] a=b=c=0
Figure 5
g ) ) C
= saddles /N
/ } s - |
{ : J/  umbilic - f
fl{ ‘:‘ \.\x“ l _/‘
il : ™ -
1 : ONg= -~
1 'r —
% & s B
A, P
Y b -
N

Definition of attaching map. Subsequently we shall need to describe

How sStrata are attached to one another, and Figure 5 presents an opportunity
to introduce and illustrate a useful definition. Suppose X, Y are strata (or
disjoint unions of strata) in a manifold Z, such that > = %Y. We say the map
attach W oonto Y I ¥(0xM) = Y and ¥ maps the complement

diffeormnorphically onto >. Let Mb = Y(exM). Intuitively we think of M@

moving isotopically through X, tracing out the whole of X, as & runs through

Nor-zers values of B, and then crushing down onto Y as 6 — 0. Given.an
5 s = SE W --'_'1 \-'_1\. -
open subset W o WV, we s&y p covers W n times if Y|Y VoY v = WV s an
N—fold covering e ¥ es singularities at Y(sing Y1), which, from the
¢ SiNg L
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definition, is a closed subset of .

Example. In Figure 5 let C1 denote the ellipse given by the

; ) ) . a
intersection of C with the plane a + ¢ = 2, Define V:R x C1 - R by
¥(6,q) = &q. Then ¥ attaches the fold strata C+ U<C onto 0, with a
singularity at 0, Other examples are given in Lemma 12 and Theorem 2

below.

Unfolding the umbilics. The stratification N in Lemma 10 and

Figure 5 is the one that is refined by the hyperbolic, elliptic and parabolic
umbilics (and also indirectly by the double-cusp) as we shall show below. In
each case the refinement is non-trivial. Now there are many possible choices
of unfolding, and different applications give rise to different choices and
different (although diffeomorphic) bifurcation sets (see for example [14,
Figure 6]). In order to best compare our formulae with those of Thom, we
use his choice of unfolding for the parabolic umbilic [11,page 847. Then, in
order to best reveal the relationship between that and the other two we choose
germs and unfoldings for the latter that are different to his. These give

slightly different bifurcation sets, but yield simple formulae for y.

; : +
Example 3. The hyperbolic umbilic D4.

Choose the germ f = x2y N Igya. Here n=2, k=3, mJ = ms, and
therefore ¢ = 0, codim f = 8, Choose for m/J the base {xz, -x, -y} ard
coordinates (t,u,v). Choose g by reinterpreting the base jets as germs.
Therefore the unfolding is

F=x2y+3§y3+tx2—ux—vy.
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Therefore
2 2
(8 |MXx,yst,u,vXE,n) = E (ytt) + 2Enx + n ¥

2 2 2
Choose for m /mJ the base {£ ,28n,n } and coordinates (a,b,c). Therefore y

is given by

u = 2ab

2
b2+c

v
’ 2 : :
This has Jacobian 4(ac - b ), confirming that
sing ¥ = C,

the discriminant cone of Lemma 10, We now want to compute how strat y
refines N. Since N* = C, the only strata to be refined are the two fold strata

; g ' 2 2 5
C+ and C_. The singularities of X|C are given by a + 3b = 0. (This can be
found by substituting ac = b2 and computing where the Jacobian matrix drops in
rank, or by Lagrange's method of undetermined multipliers). Hence a = b = 0,
Therefore X!C is singular along the c-axis, which is a generator of the
cone C., This generator is separated by the origin into two half-lines.

Therefore each of the two indeterminate strata, C, and C , is refined into two

+

substrata, one substratum comprising a half=line of cusps, and the other

comprising the complementary surface of folds. Therefore altogether strat y

has B8 strata.

The generator is mapped by y into the parabola u = o,

2 2
v =t which is the cusped edge of the bifurcation set.

Figure 6.

/|
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Example 4. The elliptic umbilic D;.

2 3
Choose the germ f = x y —= Xy |, and, apart from this one change of sign,
exactly the same unfolding as the previous example
2 3 2
F=xy-=Xy +tx = ux - vy

Then y is given by

> 7 ; Sk : 2 2 . .
This time the singularities of ch are given by a - 3b = 0, which gives 3

generators of C, namely the c-axis and the lines with direction ratios
(a,b,c) =(8, + ,/3,1). Therefore each of the two indeterminate strata is
refined into two substrata, one substratum comprising 3 half-lines of cusps,

and the other comprising the complementary 3 components of folds. Again

strat y has altogether 8 strata (only this time they are not all connected).
Each of the 3 generators is mapped by y into a parabola
touching the t-axis, and the sections of the bifurcation set perpendicular to the

t-axis are triangular hypocycloids,

Figure 7.
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Example 5. The parabolic umbilic D5.

2 4 3
Choose the germ f = x"y + Y%y . Here n =2, k =8, g =1 because y £ mdJ.
: -1 :
Therefore codim f =4 and m N = N x R, Following Thom [ 11 ,p. 84]

c 2 2 ;
choose for m/J the base {x",y ,-x,-y} and coordinates (t,w,u,v). Therefore

the unfolding 1is

F=x2y+.‘4y4+tx2+wy2—ux—-w.

Therefore
= 2 232 3
(8 IMJCX;Y;MU.V,WXS:TQ = g (ytt) + 28nx + 1 (-Q_y +w) + ny-

2 2 2 3
Choose for m /mdJ the base {£ ,28n,n ,n } and coordinates (a,b,c,d). Then

y is given by

Again this has Jacobian 4(ac—b2), confirming that

sing ¥ = CxR
where C is the discriminant cone of Lemma 10, and OxR is the d-axis. This
time there are 3 strata of NxR to be refined, namely OxR, C+XR, C xR. The
umbilic stratum OxR is refined in 3 substrata

hyperbolic umbilics d >0

parabolic umbilic d=20
elliptic umbilics d <0
Meanwhile the orther two strats C+xR are refined by the formulae (which can
be found by computing successive ;inguiar‘ities of XICXR) :

folds ac = b #-ad

cusps ac = b

i

I

o
a
o

o

e
5
0

swallowtails ac

Il
o
]
1
w
na
a
o
no
|
'
0
W
k4
o
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We can draw pictures of the refinements by squashing each end of the cone
Y " s 4 F o "
flat; more precisely the projection R - R given by (a,b,c,d) = (e,b,d),
3
where e = Y¥(a-c), maps each of C+><F~’. diffeormorphically into R . Figure B

shows the images of the refinements.

Figure 8.
C._XR (,+XR C‘-_ixFQ
R
/swallowtai1$
d /l// cusps of
#e // D i 2o
M, line ype Yo
i Z— M ,curve
werE = .‘.‘ hll
[
2 4
1 il —
cusps of type —x2+y4 cusps of type x -y
Note that the swallowtails only appear 1in C+><F3 because
3 2 - . ) )
a = 4d4ac = 4b > 0, and therefore a > 0, Therefore C xR is refined into only

: : 2 4
2 substrata, namely one 2-dimensional substratum of cusps of type -x + v

with 2 components given by

2
ac = b =-ad, ac<0;
: s 2 3
and the complementary 3-dimensional substratum of folds of type -x + vy
(also with 2 components). Meanwhile C+:<R is refined into 4 substrata,
; ; : 2 5 )
namely one 1-dimensional substratum of swallowtails of type x + y (with 2
; ; 2 4
components); one connected 2-dimensional substratum of cusps of type x + vy ,
2 A ;
given by a > 4c; another 2-dimensional substratum of (dual)-cusps of type

x2 - y4, given by a2 < 4c (with 3 components); and the complementary
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s—dimensional substratum of folds of type —x2 + }’3 (with 2 components).

Summarising, we have shown :

Lernma 11. The catastrophe map of the parabolic umbilic has 12

strata as follows :

NxR strata ¥

minima minima

maxima maxima

saddles saddles

Ci, ¥R folds, cusps. dual-cusps, swallowtails

rolds, cusps

OxR hyperbolic, elliptic, parabolic umbilics.
Note that LI ET st 1= raucnh more cormpiicated becauss of
self-inter B [ )

Before leaving the parabolic umbilic we relate it to the previous
examples. Notice that Cxd meets the cusp strata in 1, 2 or @ generators
i z
according as d £ 0, as follows
d > 0 : 1 generator with direction ratios (0,0,1,0)

d 0 : 2 gererators with direction ratios (0,0,1 ,0),(1,0,0,0),

1]

d < 0 : 3 generators with direction ratios (0,0,1,0),(1,+/~d,—d,0) .
These correspord to Figures 6 and 7 because points on O0xR represent
hyperbolic or elliptic umbliics according as d 216,

In Figure 8, OxR is projected onto the vertical axis of each cylinder,
and Cxd is projected onto the two horizontal sections at level d, Figure 8
illustrates how Hhe huperbolic stratum d > O lies locally in the closure of

1 shest of viHereas the elliptic stratum d < O lies in 3 sheets.

shows how the 3 denerators merge smoothly into 1 by coalescing

Figure & :
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the other 2 at the parabolic point. We shall now rephrase these obseprvations
in terms of an attaching map, in order to furnish intuition for the analogous
7=dimensional result for the double—cusp (see Theorem 3 below). _

Let C1><R, M denote the intersection of the plane a + ¢ = 2 with f:;_lrlxt-?
the cusp and swallowtail strata. In Figure 8, C1xl? projects onto the
cylinder of radius 1, and therefore M consists of a line and a curve; the lire
has eguations e + 1 = b = 0, and the curve can be written parametrically

(e,b,d) = (cosB8, Sine,—tange/Q), -7 < 8 < 1. Define ¥:RxM - F24 by

¥(6,>q,d)) = (&q,d).

Lemma 12. Y attaches the cusp and swallowtail strata onto the

umbilic strata, covering the hyperbolic stratum once, the elliptic stratum

thrice, with a singularity at the parabolic point.

Proof. The line maps diffeomorphically onto 0xR, and the curve is

folded onto the elliptic stratum.
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SECTION 3. THE DOUBLE CUSP,

4 4
The double cusp has germ f = x + y , and belongs to the family Xg in

Arnold's notation [3,4]. Here n =2, k = 4 and therefore dim(mg/m4) =T
Meanwhile ¢ = 1 because x2y2 £ mJ. Therefore codim f = B, Therefore the
problem of finding strat y is reduced to finding

(i) the 7—dimensional stratification N, and

(il) the 8-dimensional refinement of NxR,
However Looijenga [8] has shown that the last factor is trivial in the sense
that there is a homeomorphism

strat x = (strat y')xR
where y' is the semi-universal unfolding
X‘:mg/m4 — m/J+m4

defined in the same way as y, only with mJ,J replaced by md,J-H'n4.
Therefore problem (ii) is reduced to finding

(iii) the 7—-dimensional refinement strat y' of N.
It is possible to list the strata and their incidence relations, and to write
down equations for them as in the above examples. But to my mind the
problem is not satisfactorily "solved" until one achieves a more global
geometric description of the way the strata fit together, that one can somehow
"yisualise". In this sense we shall give a solution to problem (i), but as yet
I have not been able to solve problems (ii) and (iii). So let us tackle
problem (i).

2, 4 2 2
We can decompose m /m by the gr—mvamant short exact sequence

mS/mtI —c_) m2/m4 _p_“} m2./m3 .

where p is the projection. In the case n = 1 this is easy to visualise,

because it is just the left—-hand plane pictured in Figure 4, with

; c 2 p 5
b-axis > R >» a-axis.
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Howewver in the case n = 2 we are considering, the dimensions make
visualisation more difficult :
3
R —C ) e P 5
: ; 3,4
However we have already done the two ends, because the stratification N™?" of
4 . y . & g ;
the left-hand end R~ is given by the cubic discriminant D, or the umbilic
; Zae ; 2,3 . 3
bracelet of Theorem 1, while the stratification N of the right hand end R
is given by the quadratic discriminant cone C of Lemma 10, Since p commutes
3 : - ; 2,4 ; 7
with the action of y the stratification N = N of the middle R that we

. . -1 2,38
are seeking is a refinement of p T

Product structure, It is convenient to choose a product structure

7 3 ; : . R
R =R xR4 compatible with p. The easiest way to do this is to choose

coordinmates x,y. Then a 3-jet f € R7 can be written f = pf + y by Taylor
expansion, where pf € F!a is the unique 2-jet, and vy € R4 the third order term,
which is determined by, but depends upon, the choice of coordinates. Although
the product structure depends upon choice, the constructions that we make
below are '% ~invariant, and hence independent of choice, For example the

Bl A 10,8

stratification Ng’ R =p N is ‘g—invariant.

Lemma 18, In the double~cusp N contains 12 strata as follows :

Corank Ne’sxR4 N ey dim strat y'
minima ; minima 7 A1
0 maxima maxima T

saddles saddles 7 A



b

6
T, , folds 5] A
c xr* +5 2
M+, cusps™ 5 AS’A A5,A6,A
1 6
5 T ,folds 6 A,
C xR 5
!\.ﬂ‘\_,ct,lsps"'t 5 A A oA Aa’
H, hyperbolic e D4
E, elliptic 4 D,
4 sk
2 OxR P, parabolic 3 D5
X, exceptional® 2 EEi
0, double cusp® 0 Xge

Rermark. The asterisks denote the indeterminate strata. The notation
for the strata of N refer to Lemma 1 above and Lemma 14 below. The last
column lists in Arnold's notation [2,3,4] the substrata that occur in the
refinement strat y' of N. One can show that these, and only these, substrata
occur by the methods of A'Campo [1]. The substrata occur with multiplicities;

2 4 :
for example all four substrata of cusps occur, X +y , ‘two in each As.
P 4, 4 .
Although N is independent of the germ x +y , the list of substrata depends upon
4 4

the germ. In the case of non-compact germs of Xg, namely x -y and

e 22 . g s
x 4y —6x y , different substrata occur; for example A? disappears, while D6

appears in P, and E? appears in X. However [ do not know the geometry of

all the substrata.

Proof of Lemma 13. As we have already cbserved, the g—action

4 . ¥ : " . ;
on OxR~ reduces to linear action, and hence the refinement in N is given by the
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is

o : 4 . )

umbilic bracelet. There remains to check C+xR . Any 2-jet in C-I-
, 2 4 _ g . B

equivalent to x , and therefore any 3=jet in C+><R Is equivalent to x~ -+ y
2 5 : 5] ; i

or x , giving a determinate substratum T+ of folds, and an indeterminate

substratum Mf of cusps (indeterminate, because the 3~-jet cannot distinguish

between cusps, swallowtails, etc.). Similarly for C . This completes the

proof, and we row look at these two substrata more closely,

Lemma 14, Mf Is a 5-dimensional M&bius strip and T_?_ is a

6-dimensional solid torus.

2
Proof. Let qo =x € C+, and let f ¢ qO 2 R4. Then

2 3
f=x" + ax +b:-(gy+cx}.’e-l-dy3

3

2 2
= (x + ¥ax" + bxy +cy2)) + dy™  (modulo m4)

3
= xg + dy .,
Therefore f € Mi if and only if d = 0. Therefore

3

5 4
M N @R = q, x Ry

+

3 . ;
where RO (oo R4 is the linear subspace given by d = 0,

Analogous to Lemma 3, we can write the generic guadratic forrm using
the complex variable z = x + iy, one complex coefficient v = Y4 = iYg’ and

one real coefficient &, as follows :

Figure 9,

2 =
K(yz +62Z)

2 2 2 2
Y=y )i 2y,Xy + B(xTHyT)

q = (y,8)

Sl

/\?‘}-
Therefore the discriminant cone C is

N given by |y| = |8], and C+ given by § 2 0,

Metrically the coordinates (y,8) have the attraction that C is now a circular

"

2 2
(Bty, X" = 2y, xy + (5-v,)y

cone with axis the §-axis, whereas it was only an elliptical cone in the (a,b,c)

coordinates of Lemma 10. Let GB denote the circle on G given by
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i ) : 1. :
§ = constant £ 0, As in Lemma 4 the action of the circle group S is given

by
2ig
qge #Y,s)ge = (ye ;5)-

In other words the circle group spins G twice around its axis, leaving the

circles Cé invariant. Now let

1 . .
The first half of S isotopes q once round G?J back to itself. Meanwhile, by
3i8 if

e

1 o

- 4 . A
Lemma 4, S acts on R by (a,8)9, = (ae ,Be ). Therefore when 9 = 1,

4 3 . 2 . .
27 antipodally, and hence maps P.O onto itself reversing orientation.

g maps |

- b - 4 < - £ ~ 4 ¥

Therefore: the first hal = over G, through f_,éxl-? back onto
itself with orientation reversal, tracing out & 4-dimensional Mdbius strip MR.

Therefore

: 9, ' ok o . ; & .
because N is ‘%—mvamant, and hence S —invariant. Finally we show M+ is
3

. Make a
OQ

3
Let R. =R
8

a2 Mbbius strip by scalar multiplication, as follows. 0

standard copy of the 4-dimensional Mobius strip by defining

2ig 3 1
M4 = U{e YR, 0s8<T}cS xR4.

Define
4 3 4
R o R OxR

218 2ig
(sde” "y - (e 58),Y)

4 4 . 5 :
Then Y(&xM ) = MS’ and ¥ maps R_E;»d‘\fl4 diffeomorphically onto M+, proving

the latter is a S-dimensional Mbbius strip.

. 4 4 . y .
Meanwhile the complement of quO in gxR  is a pair of 4-cells, which

et half of S isotops onto sach other preserving orientation, and forming

a B-dirmensional solid forus. Sealar multiplication by R-F gives the

=6

G—dimmensional solid torus | This completes the proof of Lemma 14.

'
5T
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To complete the description of N we need to show how the two Mabiu

strips are glued onto the umbilic bracelet,

= s
Theorem 3. VY attaches the cusp strata M; onto the umbilic strata Ol

covering the hyperbolic stratum H once, the elliptic stratum E thrice, and with

singularities at D.

Remarks. The wording of the theorem resembles that of L emma i2,
and so some intuition can be extracted from Figure 8, A corollary of the
theorem is that the induced stratification on R xy is tsomorphic to that of the
hyperbolic umbilic in Figure 6 if v € H, or to the elliptic umbilic in
Figure 7 of y € E. Consequently in the refinement strat y' of N, the strat
substrata A4 AS’AG’A? of swallowtails, etc. do not neet the neighbourhood of

3

H,E and only abut D, as in Figure 8,

Proof of the theorem. Let =I.-MLIl - R4 be induced by projection

4 4
STXR4 - R4. If we identify M4 = 0)(.’\/'!4 R = 0xl‘—€4 then § = ¥|M~, Since 1Y

r . 4 el |
- i 5
maps the complement of M~ diffeormorphically onto M+, the theorem reduces to

showing | covers H once, E thrice, with singularities at D,

5 3 )
Define the core @ of M4 as follows. Recall that we defined

3 2 =
RS c R4 by d = 0; now define R2 cR byc=d=0, LetR = Raoa. Define
0 0 (o] 8 [oha=
Qd = %}{eglaxf—?i; 0 <8 <nlc m? S

3 ) ) . y - =35
Then Q is a 3-dimensional solid torus, since the antipodal map of RO is

! orientation preserving.

e Lemma 15. Sing ¢ = Q@ ,

Wsing v = y@° = Ur? = b,
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Proof. Since § embeds each fibre, w(eglesz) = Ra

8,
. 3 3 3 2

psin nRrR.=1lim(R R =R
¥sing ¥) 5 qo-*e( i M 5 5
5w 2 " 3 . I

Therefore §(sing ) = URG’ and sing § = @ . The condition for f to lie in

some Ri is that f has at least two roots equal, which is the same condition

for f ¢ D. This completes the proof of Lemma 15,

Projective notation. The projective point of view lends some insight,

because it shows that the exceptional stratum determines both the bracelet and

sagis ' 3 : . s
the Mbbius strips. Let P~ denote the 3-dimensional real projective space of
=3 4 2 3 4
lines thirough the ocrigln in B Then .‘_--:E c Re = R induce projective subspaces
1 2 3 P 4 . = _ = 3
PH c PB - P°. By lLemma 2, Xc D c R induces X C B s P,

..

- ) ) . o
5] 2 is & bwisted cubic curve with tangents {1-’8} and

[i®)

=2 1
D is the ruled surface UP and the envelope of

osculating plares {F‘% i 5

Proof. The second sentence is a corellary of Lemma 16. X is a
: ; ; 3 2 2 3
twisted cubic because it can be parametrised [a,b,c,d] = [17,3)% [T (TR U
The rest follows from tne fact that the generators of a cubic developable
are the tangents, and its tangent planes are the oscilating planes, of its edge
of regression [15].

Having dealt with the singularities of §, to complete the proof of

¥

Theorem 3 we must now deal with its regularities.

Lermma 17. ¥ covers H once and E thrice.

d

the

with

@D

The

es
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