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Lagrangian theory (2) and elementary catastrophe theory (5) coincide locally but
differ globally. Locally the singularities that occur in the two theories are the same,
but globally the manifolds that occur are different. We shall show that Lagrangian
manifolds are more general.

By a catastrophe manifold M over a parameter space C we mean a component of
the critical set of a family F of functions parametrized by C. It is well-known (e.g.
(6), (7)) that, given such M, C, F, then F induces an immersion of M as a Lagrangian
submanifold of the cotangent bundle T*C of G. Thus every catastrophe manifold
can be immersed as a Lagrangian submanifold. I t is also well-known that not every
Lagrangian immersion can be induced in this way; indeed the Maslov index (l) is an
obstruction. More subtle is the fact that there exist manifolds M, C such that M can be
immersed as a Lagrangian submanifold of T*C but cannot occur as a catastrophe
manifold over C for any F.

We prove this by constructing an example; it is useful to have an explicit low-
dimensional example because surprisingly few Lagrangian manifolds are known
(other than those induced from functions). The lowest dimension in which an example
can occur is 2, and so we choose C = R2. Then the simplest candidate for M must be
the Klein bottle K, due to the constraints on the Stiefel-Whitney classes imposed by
the obstruction theories of Hayden (4). The non-orientability of K prevents it from
occurring as a catastrophe manifold over R2. Therefore the main task of the paper is
to construct an explicit immersion of K as a Lagrangian submanifold of T*U2.

Elementary catastrophe theory. Let J : C x J - > R b e a C" -function on a manifold X,
parametrized by a manifold C. We assume (generically) that 0 is a regular value of
dF/dx, and hence the critical set of F given by dF/dx = 0 is a smooth submanifold of
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G x X of the same dimension as C. Let MF be a component of this critical set; we call
MF a catastrophe manifold. Let x- MF ~> C be induced by projection.

Let TF" = SWJ denote the total Stiefel-Whitney class.

THEOREM 1. (Hayden(4)). W(MF) = x*W(C).

COROLLARY. If C is orientable so is MF. For C orientable w^C) = 0 => w^Mp) = 0
=> MF orientable. Hence the Klein bottle K cannot occur as a catastrophe manifold over R2.

Lagrangian theory. The cotangent bundle T*C has a natural symplectic structure a).
If M is a manifold of the same dimension as C, then an immersion of <f>: M -> T*C is
called Lagrangian if co vanishes on the tangent planes of<j>M. Let x' M -*• C be induced
by projection.

T*C

THEOREM 2. (Haydeni*)). W2(M) = X*W2(C).

The relationship between the two theorems is as follows. Given F, let <j>F: C x X -»• T*C
be given by (j>F{c, x) = (c, 8F/8c). Then 0 f | MF is a Lagrangian immersion (6, p. 716).

T*c

proj

Hence in this special case Theorem 2 is a corollary of Theorem 1. However, in
general Theorem 2 cannot be sharpened to Theorem 1. To prove this we choose G
with W(C) trivial, and seek M such that W2(M) is trivial but W(M) is non-trivial.
Hence M cannot be 1-dimensional, and if it is compact and 2-dimensional then it
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must be non-orientable with even genus. Hence the Klein bottle K is the simplest
candidate. We now set about constructing a Lagrangian immersion of K in T*U2,
thus proving that the two theories differ.

Construction of the immersion. We shall use an immersion in the form of a figure-
eight multiplied by an interval, with the ends glued'together by a half-rotation

Fig. 1.

(Fig. 1). Notice that a half-rotation of a figure-eight reverses orientation, and so this
is indeed an immersed Klein bottle. Analytic immersions of this type do exist in U3 (3),
but we shall need the extra room of the fourth dimension in order to satisfy the
Lagrangian condition.
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Let (a, 6) be coordinates for R2, inducing coordinates (a, 6, c, d) for T*U2. The sym-
plectic structure is then given by

w(u, v) =
v2

0

where u = (uv uz, u3, u4), v = (vv v2, v3, vt) are two tangents at a point of T*U2.
Let F be a C^-curve in R2 that starts at (0,1), runs up the 6-axis to (0, 2), bends

smoothly round to rejoin the 6-axis at (0, — 1), before finally descending down the
6-axis to (0, — 2), as shown in Fig. 2. Let <r + 1 be the length of F. Parametrize F by arc-
length s, 0 s£ s ^ cr+1, and let (a(s),/?(s)) be the coordinates of the point s. In
particular, denoting the derivative with respect to s by a dash, we have:

^ l = > a = a' = 0, ytf=l-t-s, ft' = 1.

s ^ <r+l=>a = a' = 0, p = <x-s-l, / ? ' = - l .

Choose e, 0 < e < (max {|a"|2 + |/?"|2})-*. This ensures that e is less than the radius of
curvature everywhere, and so the e-disks normal to F in R2 are locally disjoint; by
further choosing e sufficiently small we can ensure that they are also globally disjoint
from one another.

Let £(a, 6) denote the distance from (a, 6) to F in R2. Let R3 = R2 x R, with co-
ordinates {a, b, x), and identify R2 = (R2 x 0. Let F: R2 x R -+ R be given by

(*)

Then F has catastrophe manifold MF given by

Fig. 3.
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Since MF is the boundary of the e-neighbourhood of F in R3, we can think of i f as a
tubular cylinder (Fig. 3) of radius e running along F, together with two hemispheres
at the ends. We shall in fact only use the cylinder part, which we call A. The cylinder
is the union of the circles bounding the e-disks normal to F in R3, which are disjoint
by our choice of e. Each circle can be parametrized by 6, such that

Hence A is parametrized by (s, 6), 0 s£ 5 ^ a+ 1,0 < 6 < 2n, and the coordinates of
the point (s, 6) in R3 are given by

(a, b, x) = (a + eft' cos 6, /? — ea' cos 0, e sin 0).

Now .F induces a Lagrangian immersion of M, and hence of A, in y*R2, given by

/ 8F dF\
(Q, b, X) 1—> I d) b)— 7

Since s measures arc-length,

Therefore at (5,6),
p 17? p

— = 2x£-f = 2(e sin 6) (e cos (9) /#' = e2/?' sin 2(9,

^ r - = -e2a'sin2<9.
CO

Therefore the Lagrangian immersion <j>A -> y*R2 is given by
<f>A{s, 6) = (a + eyff' cos 6,fi—ea' cos 0, e2/?' sin 20, — e2a' sin 26).

Notice that each of the circles s = constant is immersed as a figure-eight by <j>A; for
example when s = 0, by (*),

<f>A{O,d) = (ecos/9, l,e2sin20,0).

This is a figure-eight as shown in Fig. 4. Increasing 5 has the effect of isotoping this
figure-eight in T*U2 so that the self-intersection point runs along F, <= R2 c T*U2,
and as it goes along the 2-plane containing the figure-eight rotates in the 3-planes

Fig. 4.
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Fig. 5.

normal to P. This rotation is just what is necessary to satisfy the Lagrangian condition.
We shall now construct the Klein bottle by immersing another cylinder B and

glueing it onto A; only this time we have to use a different process for manufacturing
B in order to avoid constructing a torus by mistake. Then the whole immersed Klein
bottle will consist of a figure-eight running along the curve F u I \ shown by Fig. 5.

Any 1-dimensional manifold immersed in T*U is trivially Lagrangian, and the
cartesian product of two Lagrangian manifolds is another; hence we can manufacture
B by taking the cartesian product of the figure-eight shown in Fig. 4 with a reflected
copy r \ of F in the (b, rf)-plane, as shown in Fig. 5. More precisely let S1 be the circle
parametrized by 8, 0 < 6 < 2n, and let B be the cylinder

B = {(«, 6); or < s < 2<r+ 1,0 ^ 6 < 2n), <=UxSl.

Let <fiB:B-> T*M2 be the Lagrangian immersion given by

<j)B(s,d) = (-ecosfl, -J3(s-ar), -e2sin26,a(s-<r)).

Note that we could have just written down the formulae for <j>A,<j>B and verified
directly that they were Lagrangian immersions, by checking that the vectors
u = dfi/ds, v = d<j>/dd were linearly independent and satisfied CJ(U, v) = 0. However
this approach would have been less intuitive.

To glue the images of A, B together we shall define K abstractly, cover it with two
charts, map the two charts by <f>A, <f>B, and verify that the maps agree on the overlap
as follows. Define i/r: U x S1 ->• R x S1 to be the diffeomorphism given by
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Let K = U x S1/!, where Z is the integer group action generated by ifr. Then K is a
Klein bottle because ijr translates K and reflects S1.

Define $:K^ T*U2 by
0 = (</>A, 0 <s <<r+l,

\<fiB, a < s < 2cr+l.
Then charts overlap when a < s < a +1 and when 0 < s < 1 (or equivalently
2<r < s < 2cr+ 1 due to the identification under i/r), (Fig. 6) and so we have to verify
that the definition is unambiguous in these cases. First, ifcr<s<cr+l then

4>B(s,d) = (-eeosd, -/3(s-a), -e2sin2d,a(s-a))
= (-ecos0, - ( s -c r+l ) , -e2sin20,O), by (*)
= (-ecostf.cr-s-l , -e2sin2(9,O)
= 0> ,0 ) , by(*).

Next, if 0 < s < 1 then

= (-ecos(7T-d), -
= (ecostf, - ( o r -
= (e cos 6, s + 1, e2 sin 2(9,0)

, -e2am2(n-d),a(<r + s))

Hence <frBfr = <fiA, and the definition is unambiguous as required. Finally <f> is a C°°
Lagrangian immersion since it has these properties on each open chart.

Remark. We do not know if the immersion can be made analytic or made into an
embedding. Possibly wx is an obstruction to a Lagrangian embedding, as it is to an
embedding in R3.
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