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Decision Making and Evolution
E. C. ZEEMAN

INTRODUCTION

We shall compare decision making with biological evolution and discuss
some of the similarities and differences between them. The aim is to shed light
on social evolution, because the structure of society is sometimes changed by
decision makers but at other times it seems to adapt to socioeconomic pressures
in @ manner more similar to the way a biological species evolves.

The discussion is based on the application of catastrophe theory (Thom
1972, Zeeman 1977) to Bayesian decision theory (Smith, Harrison, and
Zeeman 1981). Bayesian theory is one of the standard planning tools used in
industry and government. The decision x lies in some space X of possible
decisions. The choice of decision is based on two things: first, information or
beliefs about the future, and second, the utilities or preferences of the decision
maker. I will explain in the next section how the information and utilities can be
expressed mathematically as functions and integrated together to give a risk
function R on the decision space X. The decision maker then chooses the
minimum of R, in other words selects the decision x that minimizes the risk
R(x). This is called the Bayes decision (see Figure 18.1).

Meanwhile, in biological evolution the space X represents the possible
mutations of a species. The function R represents unfitness, and is based on the
likelihood of the future environment and the adaptability of possible mutants
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to that environment. Darwinian natural selection then causes the species to
evolve to a local minimum of R, representing minimal unfitness or, in other
words, maximal fitness.

The similarity between the two processes is that they both select a minimum
of R; the difference between them is that in the first case the minimum is global,
whereas in the second case it is only local. The reason that the minimum is
global in the first case is that the decision maker has access to the risk function
defined over the whole of the decision space and can therefore select the global
(or absolute) minimum. By contrast, in the second case mutation is only local,
and if a species is already at a local minimum then natural selection will act
against mutants to keep it there. If there is another lower minimum, the species
will be denied access to it, even though it offers a better chance of survival.
In this sense biological evolution appears to act blindly, because it cannot see
the valley over the next hill.

It is a pertinent question to ask whether the evolution of human society can
act equally blindly. For it is a familiar paradox to see society drifting toward
some impending catastrophe or other, with the individuals in that society aware,
yet apparently powerless to prevent it. By the word catastrophe in this context
we mean some discontinuity in the structure of society brought about by
gradually changing circumstances. At first sight it is not clear why gradually
changing circumstances should produce a discontinuous effect—indeed it
violates the intuition, since continuous causes normally produce continuous
effects. However, there has been a considerable advance in the mathematical
understanding of such phenomena during the last decade, and the method of
modeling them is called catastrophe theory. The originator of the theory, René
Thom (1972), chose the name to emphasize the unexpectedness of the
discontinuities. Assuming very general hypotheses, there are theorems clas-
sifying the types of discontinuity that can occur, and if a phenomenon satisfies
these hypotheses, then it can be modeled by one or another of a few standard
geometric shapes. Although the proofs of the theorems are difficult for the
nonspecialist, some of the geometric shapes are easy to visualize, as will be
shown.

Let us return to the decision maker and ask what governs changes of decision.
As time progresses, both the information and the utilities may be gradually
changing, and consequently the risk function R will be gradually changing.
Assuming that the decision maker abides by the rule of minimizing the risk, then
this in turn will cause the decision x to vary in X. For most of the time this
variation will be continuous, but at certain moments there may be abrupt
switches of decision. For example, suppose a decision maker is holding the
decision x; at the global minimum of R and observes that the risk at another
local minimum of R at a distant decision point x, is gradually falling relative to
the risk at x;. Then as soon as R(x,) falls below R(x,) the decision maker will
switch from x; to x, in order to abide by the rule of always minimizing the risk.
This is illustrated in Figure 18.1 (a). Here the decision space X is represented
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by the horizontal axis, and the risk R by the vertical axis. The gradually
changing risk function is illustrated by the sequence of seven graphs, labeled 1,
2,..., 7. Notice that the way we have drawn the graphs the risk is in fact
steadily rising everywhere, including at x, and at x,, but nevertheless R(x,) is
falling relative to R(x,). The switch from x, to x, takes place at the time of graph
number 4. In the language of catastrophe theory, the decision switch takes place
at the Maxwell point 4, where the two minima are at the same level, and
the decision path is said to obey the Maxwell convention (Thom 1972, Zeeman
1977).

The reader may protest that these graphs, which we have drawn to illustrate
the point, are perhaps somewhat artificial; in fact the opposite is the case,
because such graphs arise naturally from integrating together typical hypotheses
about information and utilities, as we shall see in Example 2 and Figure 18.8.

In practice the decision maker may delay making the switch due to investment
in the previous decision: For example, an industry may delay changing
production due to investment in a plant, or a government may delay changing
policy due to investment in credibility. This type of delay can be incorporated
into the risk function, or specified in terms of thresholds that the excess risk
must reach before the switch is made. However, for simplicity we shall ignore
such thresholds in this chapter, because we want to contrast decision switches
with the more fundamental type of delay that occurs in evolution.

Figure 18.1 (b) illustrates the analogous situation in biological evolution.
Here the seven graphs represent a gradually changing unfitness function,
caused, for example, by a gradually changing environment. The species starts at
the local minimum at x, and will be held there by natural selection as long as
that minimum exists. The resulting behavior is different from that of the decision
maker because, for instance, by the time of graph number 5 the species will still
be held at x,, in spite of the fact that the minimum at X, is already lower.
Therefore the switch will be delayed until graph number 6, where the minimum
at X, coalesces with the maximum and disappears. The disappearance of the
minimum causes a breakdown in the stability of the species, because now any
mutation toward x; will be fitter, and so natural selection will automatically
cause the species to evolve rapidly in that direction until it reaches x,. Of course
the evolution x;, — x, may in fact take many generations, but it is still “rapid”
when compared with the evolutionary time scale, and it is liable to produce a
discontinuity in the fossil record. Such a discontinuity is sometimes called a
quantum evolution (Dodson 1972). In the language of catastrophe theory, the
evolution switch takes place at the bifurcation point 6, where the maximum and
minimum coalesce and the evolution path is said to obey the delay convention
(Thom 1972, Zeeman 1977).

It is somewhat surprising to find that the same underlying mechanism of
natural selection is responsible for two such manifestly different types of
evolution as gradual adaptation and sudden switches. Indeed some present-day
biologists, when they find that the fossil record consists of periods of relative
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Figure 18.1(a) Graphs 1-7 show a gradually changing risk function. The resulting Bayes decisions
are shown by dots. The decision switch xy — x; occurs at graph number 4, where the two minima
are at the same level, (b) Graphs 1-7 show a gradually changing unfitness function. The resulting
evolution path is shown by dots. The evolution switch xg — x| occurs at graph number 6, where the
minimum at x; coalesces with the maximum and disappears.

constancy separated by discontinuities, mistakenly conclude that Darwin must
have been wrong. On the contrary, the geometry of Figure 18.1 (b) shows that
when Darwin’s original concept of natural selection is applied rigorously, it
predicts precisely that type of fossil record. When a fossil species terminates,
indicating that the species became extinct, it does not necessarily mean that that
evolutionary line died out, because it may have survived by means of an
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evolution switch into what appears to be a different species. Birds may be the
surving dinosaurs.

SUMMARIZING:

Gradual adjustment of decision, most
of the time

Gradually changing risk —
Sudden switches of decision, sometimes

Gradual evolution, most of the time
Gradually changing unfitness —

Sudden switches of evolution,

sometimes

The comparison between the decision path and the evolution path is shown in
Figure 18.2. Here the horizontal axis represents a one-dimensional parameter
space C parametrizing the gradually changing risk and unfitness functions
pictured in Figure 18.1. The vertical axis represents the decision space or
mutation space X. The curve S represents the set of critical points of the risk and
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Figure 18.2. Decision and evolution paths due to a gradually increasing parameter. The decision
path switches at the Maxwell point 4. The evolution path delays during the anachronous interval 46
and switches at the bifurcation point 6.
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unfitness functions, the upper and lower branches representing minima, and the
middle folded-over piece representing maxima. For example, over the
parameter point 1 there is a single point on S corresponding to the single
minimum at x, of graph number 1 in Figure 18.1. Meanwhile over the
parameter point 3 there are three points on S, the upper and lower points
representing the two minima of graph number 3 in Figure 18.1, and the middle
point representing the maximum between.

The reader may wonder why I have drawn X horizontally in one picture and
vertically in the other. There are good reasons: In Figure 18.1 it is natural to
draw X horizontally because the risk R is a function of X. In Figure 18.2, on the
other hand, we want to think of C as the cause and X as the effect, and so it is
natural to draw C horizontally and X vertically. The curve S is then the graph of
cause and effect, but what is unusual about this graph is that it is folded over,
and it is this quality that is essentially responsible for the switches.

If the parameter is gradually increased then the decision and the evolution
follow slightly different paths as shown by the dotted lines. Both start on the
lower branch of § and then switch to the upper branch, but the decision switch
occurs at the Maxwell point 4 while the evolution switch delays until the
bifurcation point 6. We call the interval between the two switches the
anachronous interval, because it is this interval that characterizes the
difference between the two paths.

Let us examine in more detail the mechanisms that must underlie the two
processes. In each case there is a local mechanism, and in the decision case
there must also be a global mechanism. A local mechanism always acts by
moving x in a direction that will locally reduce R. Therefore it is responsible for
stability, because it will hold x stably at a local minimum, and if that local
minimum moves, it will move x along with the local minimum. If the local
minimum disappears at a bifurcation point, then the local mechanism will cause
an evolution switch. Therefore a local mechanism is always responsible for both
stability and evolution switches. After an evolution switch, the local mechanism
will hold x stably in the new minimum, and even if the parameter is moved back
across the bifurcation point where the switch occurred, it will still hold x stably
in the new minimum. For instance in Figure 18.2 the parameter has to be moved
right back to point 2 before the reverse evolution switch will occur at the other
fold point. The difference between the two bifurcation points 2 and 6, where the
opposite evolution switches take place, is called hysteresis, and this is a
characteristic feature of local mechanisms. In the evolution case the local
mechanism is natural selection, and this is the only mechanism.

By contrast, in the decision case there is both a local mechanism and a global
mechanism. The local mechanism is the procedure whereby a decision maker
continually explores local variations of his current decision and continually
adjusts it to keep the risk at the local minimum. For example, most financial
policies operate on this principle, by making incremental adjustments on the
previous budget. Meanwhile the global mechanism is a much more complicated
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affair because it involves three ingredients: First, it involves globally exploring
the risk function in order to find the global minimum. Second, it involves |
overriding the local mechanism at the Maxwell point in order to break the
stability of the old decision and make the switch to the new decision. Third., it
involves reinforcing the stability of the new decision in order to prevent a
reverse switch back again and to allow time for the temporarily overridden local
mechanism to reestablish itself as the natural stabilizing force at the new
decision. If there is a global mechanism, the decision switch always preempts
the evolution switch that would have occurred had there been no global
mechanism, as can be seen from Figure 18.2. In contrast to the hysteresis at an
evolution switch, there is no hysteresis at a decision switch, because if the
parameter is moved back again then the reverse switch occurs at the same
Maxwell point. Therefore, after a decision switch the new decision is vulnerable
to reversal, especially if there is any stochastic noise in the parameter, which
explains why the third ingredient of the global mechanism is necessary. The
capacity to perform these three ingredients demands intelligence, and this is of
course the main difference between decision making and biological evolution.

Let us now apply these ideas to social evolution. It is tempting to speculate
(Renfrew 1978, 1979) that certain discontinuities in the archaeological record
may have been caused by switches in social evolution, just as certain
discontinuities in the fossil record may have been caused by switches in
biological evolution. In this case, X would be a multidimensional space
representing possible structures of society, and R an unfitness function that was
gradually changing due to variations in population, environment, resources,
technology, culture, etc. The local mechanism would be socioeconomic
pressure, and this would continually adapt the structure of society to the
changing conditions, just as natural selection continually adapts a biological
species. An evolution switch in the structure of society would be triggered by the
breakdown of the stability of an existing structure, and then the very same local
mechanism of socioeconomic pressure would cause a rapid evolution to a
different structure.

As yet we have not introduced intelligence, nor a global mechanism, which is
the essential difference between social and biological evolution. In the social
case individuals can foresee an approaching catastrophic switch, especially
during the anachronous interval, during which the old structure of society is still
stable and the new structure is both potentially stable and fitter. Consequently
society tends to appoint decision makers who can preempt the evolution switch
by means of a decision switch. Instead of having to suffer the instability that
must necessarily follow the breakdown of the old structure, they can utilize the
remaining stability of the old structure during the anachronous interval to usher
in the new structure before the stability of the old structure has broken down.

The three ingredients that the decision makers need to establish a global
mechanism are as follows. First they must collect information about alternative
structures of society, decide utilities, and choose the structure that maximizes
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fitness (or minimizes risk). Second, they must override the local socioeconomic
pressure in order to make the switch. Third, they must reinforce the stability of
the new structure in order to allow time for socioeconomic pressure to
reestablish itself there as the natural stabilizing force. In other words they must
introduce the three familiar branches of government—the executive, the
legislature, and the judiciary. In primitive societies it was often found efficient to
embody all three branches in a single decision maker, such as a king or chieftain.
However, as society became more complex more decision makers were needed,
leading to democratization and the separation of the three branches of
government.

In some societies the rulers have identified themselves too strongly with the
local mechanism maintaining an existing structure and have failed to perceive
the increasing unfitness of that structure, particularly if it involved too great an
imbalance in the distribution of resources. As a result, society has tended to
throw up other decision makers in the form of revolutionaries. The revolution is
then the switch, and the three ingredients of the global mechanism that the
revolutionaries need are to plan, execute, and consolidate the revolution. Since
it usually takes some time for the socioeconomic pressure to reestablish itself
again as the stabilizing force after a revolution, successful revolutionaries ars
aware of their vulnerability to the reverse switchback, and so as part of the third
ingredient of consolidation they tend to be particularly severe toward counter-
revolutionaries.

Some historians suggest that on the whole man’s social structures are
surprisingly ephemeral and short-lived. but here they may be making the same
mistake as the biologists. For we should expect gradual changes of population,
resources, and culture to produce periods of continuity separated by
discontinuities in the historical record, analogous to those in the fossil and
archaeological records. And just an an evolutionary line may survive through
many switches of species, so a society may survive through many switches of
structure.

So must for generalities: I shall now give the mathematics and then a number
of examples. I begin by describing the general Bayesian model for decision
theory. When parameters are introduced, the Bayesian model falls naturally
into the mathematical domain of catastrophe theory, where there are theorems
classifying the geometric shapes of decision sets. The main purpose of the
examples is to demonstrate the potential of this method of modeling. A
secondary purpose is to treat each example as a speculative model in its own
right. However, to do each example justice would require considerably more
detail in defining terms, presenting supporting evidence, specifying methods of
measurement, and collecting and fitting data, than would be possible within the
scope of this chapter.

Examples 1 and 2 are meant to illustrate the mathematics and show how quite
simple assumptions can lead into the subleties of the cusp catastrophe. They
concern predictions in the case of a one-dimensional spectrum of choice. For
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example, an investor might be trying to predict the price of a particular stock on
the stock market in the face of ambiguous information. A government might be
trying to predict its budget or a primitive society the best allocation of its
resources. In each case the information is presented to the decision maker in the
form of a probability distribution with a single peak, but if the distribution is
skew, then the information will be ambiguous in the sense that the decision
maker will not know whether to follow the mean or the mode. The ambiguity is
resolved by a suitable choice of utilities, and the model gives rise to a cusp
catastrophe that reveals the divisions and switches among the decision makers.

Example 3 is a more abstract model concerning the evolution of bird’s beaks.
Changes in the food supply cause evolution switches between specialist beaks
filling ecological niches and general-purpose beaks that are suitable for a variety
of foods.

Example 4 is an analogous model concerning the evolution of roles within a
society, with changes in the resources and technology causing the evolution of
specialist roles filling sociological niches and general purpose roles that are
suitable for a variety of activities. The paradox here is that individuals can
decide to switch to fitter roles, but the roles themselves tend to evolve blindly
like the bird’s beaks. Thus social evolution can simultaneously reflect aspects of
both decision making and biological evolution.

Example 5 is an analogous model concerning the evolution of the structure of
society. The main difference here is the existence of a global mechanism that
eliminates anachronous structures, whereas in the previous example the
harmless anachronous roles were allowed to survive.

Example 6 is a more specific version of the last example, concerning the
policies put forward by political parties at elections, and discussing the splits
that can occur between specialist policies and more general platforms aimed at
broader constituencies.

Example 7 describes the confusion between two decision makers with
different utilities and hence different risk functions, as exemplified by the
misunderstandings that can arise between doctor and patient. In particular, the
model sheds light on the delays that sometimes occur before a patient will
admit he or she is ill or admit that he or she is better again. Further examples
can be found in Harrison and Smith (1979) and Zeeman (1980).

BAYESIAN THEORY

In the next two sections I describe the general mathematical model, and in
Examples 1 and 2 I give simple illustrations of the mathematics. The reader
may find it helpful to read the examples alongside the general model. The model
will apply to both decision making and evolution, but for simplicity I phrase it
mainly in terms of decision theory (Smith, Harrison, and Zeeman 1981).

Let R denote the real numbers (the heavy type distinguishes R from the risk
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function R), and let R" denote n-dimensional space. The data in a Bayesian
model consist of four things: X = decision space; Y = future space;
P = probability distribution; and L = loss function. From this data we shall
construct the following: R = risk function.

The decision space X is the set of possible decisions x. In some examples we
shall have a single spectrum of decisions, X =R. In other examples the
decisions may depend on n variables, so that X will be an open subset of R”.
Indeed in some applications it is necessary to have # large in order to represent
all the multiple relevant interacting factors involved, but then the mathematical
theorems will allow us to leave most of these variables implicit, as is explained
below.

The future space Y is a set of future possibilities y. These possibilities may
refer to some specific time in the future, or they may represent future
developments over a specified period. In some examples there will be a single
spectrum of possibilities ¥ =R, but in other examples Y may be
multidimensional, or more complicated. The only mathematical requirement on
Y is that it should have a measure, so that we can integrate over it to cover all
possibilities. The particular measure on Y is unimportant because the risk
function turns out to be independent of the measure. This is useful because
different decision makers can then use different measures, but they will arrive at
the same decision, provided they have the same information and utilities. If the
decision is merely a prediction of the future then we shall have X = Y. On the
other hand, ¥ may be much more complicated than X, because the future may
hold many more possibilities than there are options open to the decision maker.
Indeed the very purpose of Bayesian decision theory is to enable the decision
maker to allow for the complexity of the future.

The information about the future, or the decision maker’s belief about the
future, is contained in the probability distribution P:X X Y—R. Here P(x, V) is
the probability that if the decision x is made then the future y will occur. More
precisely, if dy is a measure-element of ¥ at y, then P(x, y)dy is the probability
that the future will lie in dy. Therefore, for each x in X,

f P(x, y)dy = 1.
,,

If the decision has no effect upon the future, then P will be independent of x,
Ax, y) = Ay).

The utilities or preferences of the decision maker are contained in the /oss
Junction L:X X Y—R. Here L(x, y) is defined to be the loss that the decision
maker will incur if decision x is made and then the future y subsequently
happens.

Having been given the data we can now define the risk function R:X—R, as
follows:

R(x)= fL (x,»)P(x,»)dy.
f
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In other words the risk function is the expected loss: The decision maker weights
each future probability-element P(x,y)dy by the appropriate loss L(x,y) and
then integrates over Y to cover all possibilities in order to obtain the expected
loss for that decision. We assume that the resulting function R depends
smoothly on x (see the Appendix).

Call x a critical point of R if the gradient VR of R vanishes at x. Generically
the critical points of R will be minima, maxima, and saddles (if » > 1). However
nongeneric critical points may occur generically in a parametrized family of
R’s, as for example the point where the maximum and minimum have coalesced
on graph number 6 in Figure 18.1 (b). Such points are fundamental in
catastrophe theory because they are responsible for the evolution switches, Let
S = the set of critical points, given by VR = 0; E = the subset of minima; and
D = the subset of absolute minima. Then D C E C § C X, and generically D
will contain exactly one point that is the Bayes decision minimizing the risk.
However, it may occur generically in a parametrized family of R’s that some
D’s will contain more than one point, as for example in graph number 4 in
Figure 18.1 (a) where both minima are the same level. Such points are also
fundamental in catastrophe theory because they are responsible for the decision
switches.

CATASTROPHE THEORY

We now formally introduce the parameters. Let C be a parameter space
governing P and L. For example if P and L depend upon k continuous
parameters, then C will be an open subset of R*. Usually & is small because we
are interested in what happens to the decision when we change only a few
parameters.

For each point ¢ in C, we are given a probability distribution P. and a loss
function L, from which we can calculate the risk function R, and hence deduce
the critical points S, minima E,, and absolute minima D,. Now let ¢ vary in C
and define the

critical set S = {(c, x); S, contains x} = all critical points,
evolution set E = {(c, x); E. contains x} = all minima,
decision set D = |(¢, x); D, contains x} = all absolute minima.

Then
DCECSCCXX

If L is generic for P (see the Appendix for a precise definition) then S turns out
to be a smooth A-dimensional submanifold of C X X, the same dimension as C,
and independent of the dimension of X. Furthermore E and D are submanifolds
of S of the same dimension. The significance of £ and D are that evolution paths
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lie in E and decision paths lie in D, and the respective switches occur whenever
the paths cross the boundaries of these submanifolds.

For example in Figure 18.2, C X X is two-dimensional, and the critical set S
is the one-dimensional S-shaped curve. The evolution set E consists of the
upper and lower branches of S, and is obtained from S by removing the folded-
over middle piece. The decision set D is obtained by further removing the two
short pieces of £ not in the decision path. In other words D is the intersection of
E with the dotted decision path. In Figure 18.10, C X X is three-dimensional
and S is the two-dimentional folded surface. E is obtained from § by cutting
along the fold curve and removing the folded-over middle piece. D is obtained
by cutting along the dotted line and further removing the two pieces in between
the dotted line and the fold curve.

Let x denote the map projecting .S onto C, which is called the catastrophe
map because it is mathematically important. Let dE, d D denote the boundaries
of E, D and define their projections in C to be the

bifurcation set B = x(0E),
Maxwell set M = x(dD).

The significance of B and M is that evolution switches occur at bifurcation
points in B, and decision switches occur at Maxwell points in M. For example,
in Figure 18.2 dF consists of the two fold points of S, and the bifurcation set B
consists of the two points 2 and 6 beneath them on the X axis. Meanwhile dD
consists of the two ends of the decision switch, and the Maxwell set M is the
single point 4 beneath them. In Figure 18.10 JF is the fold curve, and the
bifurcation set B is the cusp beneath it; D is the dotted line on S, and the
Maxwell set M is the dotted line beneath it inside the cusp.

One of our main objectives is to understand what types of decision and
evolution paths are possible when the parameters are varied, in order to fully
comprehend the relationship between gradual changes and sudden switches.
This is where catastrophe theory comes to our assistance because its theorems
classify the possible shapes of S. More precisely they classify the singularities of
the catastrophe map x:5—C.

What is a singularity? A point of S is defined to be a singularity of x if it has a
vertical tangent.! For example in Figure 18.2 the singularities are the two fold
points. In Figure 18.10 the singularities are the points along the fold curve, and
the point vertically above the cusp point. In general, the set of singularities
contains dF and other points (but the other points, such as those bounding the
set of maxima, are less important because they do not represent evolution
switches if n > 2).

Most points of S are nonsingular, and a characteristic property of a
nonsingular point is that it has a neighborhood in S that is mapped by x into C in

"Here vertical means parallel to X. This definition is equivalent to the usual mathematical
definition that the derivative of y drops rank.
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a one-to-one manner. Consequently local variations of the parameters at a
nonsingular point can only cause local variations of evolution, and so the
evolutionary state is stable. By contrast, a singularity has no such
neighborhood, and so a small variation of the parameters is liable to cause an
evolution switch. If there were no singularities, then there could be no evolution
switches. Nor could there be any decision switches if S were connected, because
then x would have to map S onto C in a one-to-one manner. Therefore it is the
singularities of x that are ultimately responsible for both types of switch, and
that is why we need to classify them.

If C is one-dimensional, that is to say there is only one parameter, then there
is only one type of singularity, namely the fold, which is illustrated in Figure
18.2. If C is two-dimensional, that is to say there are two parameters, then a new
type of singularity appears, namely the cusp illustrated in Figure 18.10. If C is
three-dimensional, then three more types appear, if C is four-dimensional two
more types appear, and so on.

Thom calls the structure of S surrounding one of these singularities an
elementary catastrophe, and descriptions of the elementary catastrophes
together with a proof of the classification theorems can be found in Thom
(1972) and Zeeman (1977). In the Appendix to this chapter we give a precise
definition of genericity of L sufficient for the theorems to hold. A fundamental
property of elementary catastrophes is their stability under perturbations of P
and L.

Of the elementary catastrophes the fold is important because it models the
evolution switch. The cusp is important because, as we shall see later in
Example 2, it models conflicting decisions. When C is four-dimensional, one of
the elementary catastrophes is called the butterfly, and this is important because
it can be used to model the emergence of compromise decision (Isnard and
Zeeman 1975). When C is five-dimensional there is another catastrophe called
E, that is being increasingly used to model various forms of psychological
decision making and psychotherapy (Zeeman 1977, Callahan 1981). When C
is eight-dimensional there is an important catastrophe called the double cusp,
which already has several applications in physics and can also be used to model
the interference between two conflicts (Zeeman 1977).

One of the advantages of concentrating on S rather than X is that it enables us
to reduce the number of variables and make the model quantitative. For
example suppose N = 1000 and k = 2, in other words there are 1000 relevant
interacting factors involved in the decision, and we are interested in the effect of
two particular parameters. Then C X X will be 1002-dimensional, but the
theorems reassure us that S is nonetheless a smooth two-dimensional surface
lying inside this 1002—dimensional space. Therefore it is possible to represent S
as an ordinary two-dimensional surface in three dimensions lying over the
horizontal plane C, with the vertical axis being a suitably chosen X variable. In
other words, to describe S quantitatively it suffices to measure only one of the
1000 X variables explicitly and leave the other 999 implicit. Moreover, the
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theorems tell us that the most complicated shape that S can have locally is the
cusp catastrophe shown in Figure 18.10. Globally there may be several cusps
and folds, as for instance in Figure 18.11.

A local mechanism can be represented mathematically by a differential
equation on X parametrized by C that reduces R, in other words, such that
R< 0 whenever VR # 0, and R= 0 whenever VR = 0 (where the dot denotes
the rate of change). For example, the gradient differential equation x = — /R is
of this type. Such a differential equation will cause x to seek E, to stay on E if
the parameters are changed, and to switch to other parts of E if 0F is crossed.
Thus the differential equation provides both the stability and the evolution
switches of a local mechanism.

Note that the differential equation itself is defined on the 1002-dimensional
space C X X, and must therefore usually remain implicit, but the resulting
evolution paths can be represented explicitly on E in the three-dimensional
picture. Similarly, if there is an implicit global mechanism in addition to the
implicit local mechanism, the resulting decision paths can be represented
explicitly on D in the three-dimensional picture.

In summary, in effect the general mathematical model has three levels of
complexity. First, the possibilities Y of the future may be very complicated.
Second, the possible decisions X are usually simpler than Y, but may still be
highly multidimensional. Third, when we get down to the decision set D, this
can sometimes be measured because it is low-dimensional, but may be subtle
because of the switches. However, the switches are determined by the
singularities, and they are classified by the theorems.

Example 1 : Predicting the Price of Stock

For the first example I choose something that is easy to understand and easy
to calculate. Consider the problem of whether to buy or sell a particular stock on
the stock market. Let x denote today’s prediction of tomorrow’s price, and let y
denote tomorrow’s price. In other words, the decision x is a prediction of the
future y. Since x, y are both numbers, we have X = Y = R.

The reader may well ask what has this to do with archaeology? In fact the
same model can be applied to any situation where a decision maker is trying to
predict something that can be measured. For instance, an archaeologist might
be trying to predict next year’s budget, or a government might be trying to
predict the rate of inflation or the future food supply. And of course these are not
only current problems, but must also have preoccupied the rulers of primitive
tribes and ancient civilizations, who must have been faced from time to time
with famines, or increasing populations and dwindling resources, and decisions
about whether to hunt or to cultivate or to emigrate.
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So let us return to the stock market in order to fix our minds. Suppose that the
information about the future is given by the probability distribution P shown in
Figure 18.3. Being only a small investor we assume that our decision x has no
effect on the future y, and so P is only a function of y and independent of x:

P(x, y) = P(y) = probability that tomorrow’s price is y.

We have deliberately chosen a skew distribution so that the mode m is
different from the mean w. This makes the information ambiguous, because it is
not clear whether we ought to follow the mode or the mean. The mode is the
most likely price tomorrow, and the mean is the expected price tomorrow, If
today’s, price happens to lie between them, then following the mode would
suggest selling stock because the most likely price tomorrow will be lower than
today’s, whereas following the mean would suggest buying because the expected
price tomorrow will be higher. Statistics emphasizes the importance of the
mean, but stockbrokers, who are generally richer than statisticians, tend to
follow the mode, so whom should we follow? The ambiguity and indecision are
resolved by choosing a loss function L.

The simplest loss function is the parabola L(x, y) = (x — »)* (see Figure
18.4). If the prediction is correct, x = y, then there is no loss. If not, then x — y
is the error of prediction, and the parabola can be regarded as a translation into
mathematics of the qualitative statement ““ The greater the error the greater the
loss.” Using this loss function we can now calculate the risk function, which is
shown in Figure 18.5.

Lemma. The risk function is a parabola with minimum at the mean .
Hence the Bayes decision is the mean.

Proof: The risk R(x) = [L(x, y)P(y)dy = [(x — y)’P(y)dy.
The variance of P, V= [(n—=y) Py)dy.
Therefore R(x) —V'= (x* — 1) [Ay)dy — 2(x — ) [yP(y)dy
= o — =2~ W
= =gy
Therefore R(x) = V + (x — w)% as required.

It is a confusing coincidence that a parabolic loss function should give rise to
a parabolic risk function, because generally the two functions are quite
different from one another as in our next example. The parabolic loss function
can be criticized on the grounds that it is unreasonable for the loss to tend to
infinity as the error increases. More commonly the decision maker has an upper
bound to his losses because he cannot lose more than he possesses. Therefore it
is more reasonable to assume a fixed loss for sufficiently large error, and so I
have incorporated this assumption into the next example.
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Figure 18.3. Skew probability distribution.

Example 2 : Ambiguity and Caution

Example | is modified by replacing the parabolic loss function of Figure 18.4
with the two-step loss function shown in Figure 18.6. As before L depends on
the error but this time it is given by the formula

0 0= |x—y| Za
L=1{l—a a< x—y‘ﬁb
1., lx—y | >b

where g, b, a are constants, @ small, b large, and 0 < a < 1. Although L is
discontinuous at *+a, b it is nevertheless generic for the probability
distribution P shown in Figure 18.3, according to the definition in the Appendix.

The two-step loss function can be regarded as a translation into mathematics
of the qualitative statement ““Spot on you win; way out you lose.” For suppose
L* is the loss function in which the decision maker makes a fixed profit p (in
other words a negative loss —p) if the error is sufficiently small | x —y| < q,
and makes a fixed loss g if it is sufficiently large | x —y| > b, and otherwise
breaks even. Then we can normalize L* by defining

Loss L

Error x-y

0

Figure 18.4. Parabolic loss function.
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Risk R

Decision X
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Figure 18.5. Parabolic risk function.

p+ L* q
L=——! a= 3
ptgq ptaq

and this gives the two-step loss function L above, shown in Figure 18.6. Such a
normalization is admissible because affine changes of L (that is adding and
multiplying by constants) induce the same affine changes in R, and so do not
alter the critical points of R nor the Bayes decision.

If @ = 0 the decision maker is only concerned with his profits, and therefore
will behave like a speculator, being primarily interested in increasing his capital
by speculating with those stocks giving the greatest return. On the other hand, if
a = 1 the decision maker is only concerned with his losses, and therefore will
behave like an investor who is primarily interested in conserving his capital by
investing in securities. Therefore we can interpret the parameter a as a measure
of the caution of the decision maker, varying from speculator to investor as the
caution increases.

The risk function R can now be computed as follows. Regard L as the

Error x-p

b ~a 0 a b

Figure 18.6. Two-step loss function.
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constant function, with value 1, minus two rectangles, the first of width 2a and
height 1 — a, and the second of width 25 and height a. Therefore

R(x) = |L(x, y)P()dy = 1 — (1 —a)A(x) — aB(x),
where

x+ta

Alx) = / ‘ ; aP(y}dy =N f GP(y)d_V

2, oy [
b

3
] P(y)dy.
=0

[

B(x) = _f ) bP(_v}dy

x =y

The critical points of A4 are given by
dA
—=P(x+a)— P(x—a)=0.
dx

Therefore A has a unique maximum at m' say, where m’ is the midpoint of the
unique horizontal chord of P of length 2a. Since a is small, m’ is near the mode
m of P. Similarly B has a unique maximum at i’ say, where u’ is the midpoint
of the chord of length 2b. If b is of the order of about twice the standard
deviation of P then it can be seen from Figure 18.3 that p’ is near the mean u of
P, as shown in Figure 18.7. Therefore if @ = 0 then R has a unique minimum at
m’, and if a = 1 then R has a unique minimum at u'. If0 < @ < 1 then R is a
linear combination of 4 and B, and so it is either unimodal, with a unique
minimum in between m’ and ', or else bimodal with two minima, one near the
mode and the other near the mean, as shown in Figure 18.8. It is surprising at
first sight that a bimodal R can arise from a unimodal P and unimodal L, but the
way we have computed R explains how this phenomenon arises, and shows it to
be stable under small perturbations of P and L. As the parameter « varies from
0 to 1 the decreasing family of loss functions give rise to a smoothly decreasing
family of smooth risk functions, as shown in Figure 18.8 (compare Figure 18.1).

0 m* '

Figure 18.7. The functions 4 and B.
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Figure 18.8. The family of risk functions.

Therefore the speculators (a = 0) will follow the mode and the investors
(a = 1) will follow the mean. If a decision maker is gradually becoming more
cautious (& increasing), then he will suddenly switch from mode to mean at the
Maxwell point when the two minima are level. Conversely, if he is gradually
becoming more adventurous (a decreasing) he will make the reverse switch at
the same point. The bimodality of R resolves the original dilemma posed by the
ambiguity of the information P as to whether to follow the mode or the mean,
and shows how it depends upon the choice of loss function.

We now introduce a second parameter f that measures the ambiguity of the
information, or in other words the skewness of P. Define

B = p — m = mean minus mode.

A symmetrical distribution like the normal distribution would have § = 0. If
> 0, then P is skewed to the right as in Figure 18.3, and if § < O, then P is
skewed to the left.

Suppose we are given a one-parameter family of distributions all skewed to
the right as in Figure 18.3 and parametrized by their skewness . Then our
parameter space C will now be two-dimensional with coordinates & measuring
the caution of the decision maker and § measuring the ambiguity of information.
In order to find the critical set .S we must investigate the modality of R, for each
parameter point ¢ = (a, f). Given S, let A;, B, denote the corresponding
functions of Figure 18.7, let my, u; denote their maxima, and let S; denote the
resulting section of S over the interval 0 < @ < 1.

If B is small then m;, u,; will be too close together for there to be any points of
inflexion of 4, B; between them, and this condition is sufficient to ensure that
(I —a)Ay + aBj has a unique maximum, for all a, 0 = @ = 1 (Smith 1977).
Therefore R, has a unique minimum for all &, and so S is single-valued over a,
as in Figure 18.9 (a).

If § is large, then R, will be bimodal for some value of @, 0 < @ < 1, as in
Figure 18.8, and therefore S will be folded over as in Figure 18.9 (b) (compare
Figure 18.2). Since these are the only two types of section, there must exist a
critical value B, such that if < S, then S is as in the case (a) and if § > B,



334 E. C. ZEEMAN

(i) (ii)
e %

15 Sp
mﬂ‘

mﬁ-

0 1 0 1

Figure 18.9. Sections of Sp for (a) small § and (b) large .

then S} is as in case (b). Then it is a theorem (Zeeman 1977) that the sections
can be assembled into a surface S, as shown in Figure 18.10. This is called a
cusp catastrophe because its bifurcation set is a cusp, and it is the unique
elementary catastrophe for a two-dimensional parameter space. Furthermore it
is stable, and so its qualitative properties are preserved under perturbations of P

and L. Figure 18.10 provides a synthesis of these qualitative properties, as
follows.

Critical set §
Decision set O

Decision space X

Fold curve

Speculators follow
the mode and sell

Caution o

Parameter

Cusp point

Bifurcation set 8

Maxwell set M

Figure 18.10. The predicted price of stock is a cusp catastrophe with the caution of the decision
maker as normal factor and the ambiguity of information as splitting factor. The continuous
spectrum of decision makers is split into buyers and sellers by increasing ambiguity of information.
Individuals switch decision if their level of caution crosses the Maxwell set.
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The decision set D is bounded by the dotted line on S vertically above the
Maxwell set M, which is the dotted line inside the cusp in C. Since the decision x
is correlated with the caution a we call @ a normal factor. Since increasing
ambiguity B has the effect of splitting D apart we call B a splitting factor. The p
coordinate of the cusp point is the critical value f3, separating the two types of
section S; shown in Figure 18.9. Therefore if § < f, the decision makers of
varying levels of caution a will be spread continously along the section Sy, and
so their predictions x of tomorrow’s price of the stock will form a continuous
spectrum. If, however, the ambiguity 8 is increased beyond the threshold S
then they will be split into two groups (as indicated by the arrows on S in Figure
18.10), with the speculators following the mode and the investors following the
mean. Therefore if today’s price of the stock happens to lie between the mode
and mean, the speculators will begin to sell and the investors will begin to buy
(which is very convenient to both parties).

If the decision maker’s path in the parameter space happens to cross the
Maxwell set. for instance if he changes his level of caution while believing the
information to be ambiguous, then this will cause him to suddenly switch his
decision from buying to selling, or vice versa.

When 8 > B, what is surprising is that all the decision makers are split,
including those of moderate caution. Although some people are predicting that
tomorrow’s price will be higher than today’s, and others are predicting that it
will be lower, no one is actually predicting that it will be the same, or anywhere
near the same. The switch from one group to the other jumps right over this
possibility. This phenomenon is called inaccessibility, and is a characteristic
feature of the cusp catastrophe (Zeeman 1977). It is particularly useful in
modeling polarized situations, where a population may initially exhibit a
continuous spectrum opinion over some issue, but if that issue increases in
urgency beyond some threshold then the population may find itself split into
taking sides, with a sharp division of opinion between the two sides, the
intermediate ground being inaccessible (Isnard and Zeeman 1975).

If the information is skewed the other way, f < 0, implying u < m, then
another symmetrically placed cusp appears, with the orientations reversed as in
Figure 18.11. As the market oscillates back and forth, first skewed one way and
then the other, the speculators and investors interchange their roles of buying
and selling to each other. Michael Thompson (1981) has used this geometry to
analyze structures of society.

Example 3 : The Evolution of Bird’s Beaks

We apply a generalization of Example 2 to the evolution of bird’s beaks.
Consider how the shape of a beak is affected by the variety of food available and
the suitability of that beak for the various types of food. Let X describe the
possible shapes of beak. For example, if we use n variables to measure the
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Figure 18.11. Skewing either way gives two cusps.

shape of a beak, and represent these measurements by a point x in R”, then X
will be a subset of R". Let ¥ denote the set of available foods, and let P be a
probability distribution on Y representing the probable availability of each food
in the given environment. Let the function L(x, y) represent the inefficiency of
beak x for food y. For instance we might invent some scale running from
perfectly efficient at L. = O to useless at L = 1. Then R(x) = [L(x, WP(y)dy will
measure the unfitness of beak x for that environment. Natural selection will be
the local mechanism that evolves the beak to a local minimum of R.

If there is a dominant food supply y, then the integral will be dominated by
L(x, yo)P(»o), and so R will be minimized by evolving a specialist beak Xy with
the minimum inefficiency L(x.y,) (or maximum efficiency) for eating food y,.
In other words, the beak x, is specialized to fill the ecological niche yj.
However, the very success of a species in filling an ecological niche will tend to
increase the number of individuals competing for that niche, and hence reduce
the food available to each individual. This in turn may produce a selection in
favor of some form of population control, for example, the development of a
territorial instinct, which will maintain P(y,) at a sufficiently high individual
level. Otherwise, the expanding population may have an effect similar to the
skewing of P, by increasing the relative importance of other food supplies.
Consequently, a bimodality may appear in R, as in Example 2, between the
specialist beak x; filling the niche y, (corresponding to the speculator) and a
general purpose beak x, adapted to eating a wide variety of foods
(corresponding to the investor). Therefore the gradually increasing skewness of
the food supply caused by the success of a species may in turn cause a
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bifurcation of the species into the gradual divergent evolution of two different
types of beak, one a specialist and the other a generalist.

Figure 18.12 shows a cusp catastrophe that synthesizes the preceding
discussion. We have assumed a two-dimensional parameter space C, with the
normal factor a representing the scarcity of food, and the splitting factor 8
representing the size of population. Unlike Figure 18.10, the vertical axis is not
X because X is multidimensional. However, we know that the critical set S is a
two-dimensional surface, and if it contains a cusp then any measurement X of
the beak that distinguishes between specialist and generalist will suffice for a
vertical coordinate if we want to plot that cusp catastrophe as a surface in three
dimensions, as in Figure 18.12.

We now consider the evolution switches. Suppose a specialist beak x, is
filling the niche y,, which is disappearing due to gradually increasing scarcity,
caused perhaps by increasing competition from other species. When the
parameter crosses the right side of the cusp then the local minimum of R at x,
will disappear |as in Figure 18.1(b)] and then natural selection will cause an
evolution switch to the general-purpose beak. Conversely a gradual growth in a
dominant food supply may cause the parameter to cross the left side of the cusp
and induce the reverse switch from the general-purpose beak to a specialist
beak. Normally abundance encourages specialists, and scarcity encourages
generalists. For instance, the abundance of plant life has encouraged many
striking examples of specialists in the insect world, adapted to one type of food
only.

Before we leave this example, notice the difference between Figure 18.12 and
Figure 18.10. In Figure 18.12 the evolution switches take place at the fold
curve over the bifurcation set B, with a hysteresis in between them. After an
evolution switch the new species is stable, and it remains stable even if the

| Critical set §

,.ff.”wolutmn set £
Gena( a\_‘\_&lp’_d____\::;—
Evolution
switch

Abundance Scarcity o
e e S U
£ . Parameter

%@/\ Bifurcation space
G set B
O,) i

Figure 18.12. Specialists and generalists.
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parameter is moved back again across the bifurcation set where the switch
occurred. Therefore both types of beak can coexist stably together over the
same parameter point in the interior of B. By contrast, in Figure 18.10 the
decision switches take place over the Maxwell set M. There is no hysteresis, and
therefore two decision makers cannot hold opposite decisions over the same
parameter point. After a decision switch, the new decision is vulnerable to
reversal if the parameter is moved back again across the Maxwell set, unless its
stability is reinforced by the third ingredient of the global mechanism.

Example 4 : The Evolution of Roles in Society

The last example of biological evolution suggests a model for the social
evolution of roles in society.

Let X be a space describing the roles. For example, if we were studying
prehistoric hunter—gatherer roles (Reynolds and Zeigler 1979), we might take X
= R?, with the first variable measuring the proportion of time spent in hunting
and the second measuring that spent in gathering. If we were studying the
present-day roles of men and women we might take X = R? to measure the time
spent in jobs and careers compared with that spent in domestic work. If we were
interested in a more complicated combination of roles- we could take X
multidimensional.

Let Y describe the possible future structures of society, including the size of
population, the resources and technology, etc., and let P be the probability of
such structures. Let L(x, y) represent the unsuitability of role x for society y.
For instance, we might invent some scale running from perfectly suited at L = 0
to totally unsuitable at L = 1. Alternatively, we might use L to measure the
rewards offered to role x by society y. Then R(x) will represent the unfitness of
role x for the future society.

For example, in a hunter—gatherer study it could be that most of the
individuals in the society did both jobs, and so the existing role would be
presented by a single minimum of R near the point (h, 1 — %), where 4 is the
average proportion of time spent in hunting. However if the parameters of
society changed, for instance if there were an increase in population or
technology, then R might develop two minima, which would then drift toward
the points (1, 0) and (0, 1). In other words a division of labor would occur. The
individuals, particularly those growing up, would perceive that in the future it
would probably be more rewarding to become either a specialist hunter or a
specialist gatherer. In some societies the specialist roles became sex-linked.

An interesting point to notice is that although society may be changing
gradually, or the population growing slowly, the resulting division of labor and
separation of roles may occur suddenly. For instance, in Figure 18.12 it occurs
at the threshold represented by the cusp point. Figure 18.12 also suggests that
long periods of abundance, perhaps stimulated by new technology, may



18. DECISION MAKING AND EVOLUTION 339

encourage the evolution of specialists to fill sociological niches and therefore
favor the division of labor. Conversely, long periods of scarcity may have the
opposite effect, encouraging the evolution of generalists and favoring self-
sufficiency. Even today, during periods of prosperity specialists tend to thrive,
but during recessions the adaptable survive better.

In a more general model the various local minima of R represent a variety of
well-defined roles or sociological niches that a young person can aim for. Here
the roles are in fact perceptions in the eyes of society, and the local mechanism
that keeps a role at a minimum of R is natural selection, just as in biological
evolution. If a gradual change in society causes a local minimum of R to move
gradually, then society will perceive that a slight change in the role would make
it fitter, and so the role will change accordingly. The role will respond
continuously at the same time as keeping its name.

Meanwhile there is no global mechanism because different roles can coexist.
The fact that the local minimum representing role B might be dropping until it is
lower than that representing role A does not mean that role 4 will switch into
role B. On the contrary, it is the individual who can decide to switch from A4 to
B, while both roles continue to exist.

As well as the creation of roles we also observe their disappearance. The
butcher and baker continue to thrive, but the candlestick-maker has been
replaced by craftsmen, electricians, and manufacturers. This disappearance of
roles gives a nice illustration of the difference between decision making and
evolution. For individuals can decide to switch to a more rewarding role as soon
as it becomes fitter, but the old role may survive in a anachronous form as long
as the local minimum of R continues to exist. If the minimum ceases to exist (as
in Figures 18.1 and 18.2), then the role will suddenly disappear. Thus society
tends to be littered with dying anachronous roles existing alongside the living
roles (where living means occupied by living individuals).

Of course different individuals will have different preferences. So far we have
only considered a single loss function L representing the rewards offered by
society as a whole, but each individual will have personal skills and preferences,
and therefore will have a separate L for his or her own role. Consequently, a role
that appears anachronous to society could appear fit to a particular individual
and could even provide an unoccupied sociological niche. Thus society tends to
be enriched by a few individuals keeping the anachronous roles alive. For
instance, the hunter’s role was probably jealously guarded by a few eccentrics
long after their society had turned to agriculture, and no doubt the cherished
weapons of those eccentrics were buried affectionately alongside them,
providing the unsuspecting archaeologist with some anachronous data.
Instances of anachronous roles can be observed amongst academics today, e.g.,
the old-fashioned archaeologist who refuses to believe in carbon dating.

In summary, the purpose of this example was to show how aspects of both
decision making and biological evolution can appear in the same model of social
evolution. Individuals can decide what role to adopt with their eyes open, but
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the roles themselves evolve blindly by natural selection, as in biological
evolution.

Example 5 : The Evolution of Society

This example suggests the underlying data for the social evolution described
in the Introduction.

Let X denote the possible social structures of a society. Let ¥ denote the
possible future resources of the society, including not only the positive resources
such as food, labor, energy, raw materials, technology, etc., but also the
negative resources such as mouths to feed, bodies to house, territories to defend,
and so forth. Given structure x, let P(x, y) denote the probability of resources y.
Here P(x, y) may depend strongly on x, as illustrated by the different standards
of living achieved by countries with comparable potential resources but different
social structures in the world today.

Given resources y, let L(x,y) measure the intolerance of society towards
structure x. We invent some scale running from desirable at L = 0 to intolerable
at L = 1. For example, if resources are scarce then society may not tolerate too
great an imbalance in their distribution. If, however, there is a likely improve-
ment of resources in the future, then society may be prepared to tighten its belt
and accept the loss of a certain amount of individual freedom for a while in order
to serve the needs of production. As resources improve, society may no longer
tolerate such loss, and may demand less authoritarian a structure. And so on.
Obviously L will depend on cultural parameters as well as the economic
variables represented by y.

Then R(x) = [L(x,v)P(x,y)dy will measure the unfitness of structure x. As
the resources P change, and as the cultural concept L of what is tolerable
changes, so the unfitness R will change. The local mechanism keeping the
structure at a local minimum of R is socioeconomic pressure, and the global
mechanism for switching it to the fittest structure at the global minimum of R is
government or revolution, as explained in the Introduction.

The main difference between this example and the last is the presence of the
global mechanism, which eliminates the anachronous structures. In the last
example the anachronous roles were harmless, because individuals could decide
to switch out of them, and so society did not bother to invent a global
mechanism to eliminate them. By contrast, individuals cannot escape an
anachronous structure, and so they combine to devise a global mechanism to
eliminate it.

Example 6: Political Parties

This example is a simpler version of the last, relating it to current politics.
One of the problems facing a political party at the approach of an election is the
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decision as to what policy or what electoral image to present to the electorate.
Suppose for the sake of simplicity that this decision can be represented by a
point on the traditional political spectrum running from the Left to the Right.
Take this spectrum to be the decision space X. The model also holds equally
well for more complicated spaces of ideologies (Zeeman 1979).

Let Y represent the different types of voters in the electorate. ¥ may contain
recognizably different components, and each component may contain a spec-
trum of types or be multidimensional. Let P(y) measure the electoral strength of
type y. Let L(x, y) measure the lack of appeal of policy x to voter of type y. The
R(x) will measure the electoral weakness of policy x, and the local minima of R
will represent electorally the strongest policies. The local mechanism is
cooperation and realism, for politicians with similar ideologies will tend to
cooperate together to present a common policy, and that policy will tend to be
drawn to the nearest local minimum of R by the realism of having to appeal to
the electorate. Meanwhile the global mechanism is the election and the
constitution, for the election will select the lowest minimum, and the con-
stitution will maintain that policy in power for a specified period.

The establishment of a particular social class, or the persistence of a
particular economic problem, may cause the growth of an electorally strong
component of Y, thus providing an electoral niche and stimulating the evolution
of a political party and specialist policy to fill that niche. Conversely, the
blurring of class differences may tend to skew P, and may cause the evolution of
more generalist policies toward the center. The onset of short-term economic
problems may have a similar effect and cause a party to be split between a
specialist policy and a generalist policy. In other words if P, represents the party
membership, then Ry(x) = [L(x.y)Py(y)dy will be bimodal, with its two local
minima representing the two policies. This can be represented by Figure 18.12,
with the normal factor a representing the proportion of party membership
outside the original traditional constituency, and the splitting factor 8 repre-
senting the onset of economic problems. Figure 18.13 illustrates various time
paths in the parameter space.

Path 1 represents a gradual broadening of party membership followed by a
gradual onset of economic problems, resulting in the gradual evolution from a
specialist policy to a generalist policy. Path 2 represents a similar change,
except that the events happen in the opposite order, so that the path crosses both
sides of the cusp B as well as the Maxwell set M. For simplicity of exposition
suppose we are discussing a party of the Left, so that initially R, has a unique
minimum to the left of X. When path 2 crosses the left side of the cusp, another
local minimum is created near the center of X, and a right wing of the party is
formed in support of the corresponding alternative policy. When the Maxwell
set M is crossed, the right wing achieves a majority in the party. There is then a
conflict between local and global mechanisms, because the local mechanism
tends to split the party, attracting each wing to its local minimum. Meanwhile
the global mechanism is the party voting procedure and constitution, and if this
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Figure 18.13. Time paths in the parameter space.

is strong enough it will unify the party at the lower minimum. Therefore it will
cause a policy switch from left to center as the path crosses M. The old left
policy will be retained as a possible alternative during the anachronous period,
but will disappear when the path crosses the right side of B. Path 3 represents
the opposite route: The onset of economic problems is followed by an increase
of traditional membership, or equivalently a decrease in the nontraditional
membership (attracted away, perhaps, to other parties). The result is the
formation of a left wing as the path enters the cusp, a switch back to a traditional
left-wing policy as the path crosses M, and the disappearance of the alternative
center policy as it leaves the cusp.

Example 7: Doctors and Patients

In this last example we study the confusions that can arise when two decision
makers use different loss functions and hence arrive at different risk functions.
Call a decision maker /imited if he or she only has local information and local
utilities, so that a local minimum appears global. Call a decision maker timid if
he only has a local mechanism, and no global mechanism. Both limited and
timid decision makers will stay in a local minimum until it disappears, and so
will appear to act blindly—like evolution—during an anachronous interval.

One can imagine many examples. For instance, without modern scientific
tools some archaeological speculations were necessarily limited. To a govern-
ment an electorate may appear limited in its lack of understanding of the need
for unpopular measures. Conversely, to an electorate a government may appear
timid in its reluctance to switch decisions. To illustrate the subtleties of the point
we choose a domestic example of misunderstandings between a doctor and his
patient.

There is often a delay, during which the symptoms of an illness are increasing
before a person will acknowledge that he is ill, and likewise a delay before he
acknowledges he is well again. The doctor has two problems: First, he may be
curious to know what prompted the patient to decide that he was ill and what
triggered the decision to come to the doctor for advice. Second, he may be
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frustrated when the recovering patient stubbornly persists in behaving as if he
were still ill, when it would be to his advantage to behave as if he were well
again. We apply the model to elucidate these problems.

Let X represent the possible treatments. For instance, if we measure the time
spent on various strategies such as going to bed, visiting the doctor, going to the
hospital, etc., then the treatment will be represented by a point x in R”. In
particular, there is a point x, representing no treatment, i.e., normal life. Let y
represent the possible symptoms of the illness. For instance, if we measure the
intensity of each ¢ different symptoms, each on some scale, then all the
symptoms will be represented by a single point y in R%. Let P(x,y) denote the
probability of having symptoms y in the future as a result of treatment x today.
Let

L(x) = the cost to the patient of treatment x;
L (y) = the cost to the patient of symptoms y.

We assume that the costs include not only financial costs, but also penalties for
time lost, inconvenience, physical and psychological handicaps, etc., and that
they can be measured compatibly so as to be added together to give a total cost
L(x.,y) = Ly(x) + L,(y). Consequently there are three risk functions:

Ry(x) = [Ly(x)P(x,y)dy = Ly(x) = cost of treatment x.,
R\(x) = [L(y)P(x,y)dy = medical risk of treatment x,
R(x) = |L(x,p)P(x,p)dy = Ro(x) + R(x) = Lo(x) + R(x)

total risk of treatment x.

We assume L, has a minimum at no treatment x,, that is to say normal life.
Suppose that x, represents the appropriate treatment for the illness, so that R,
has a minimum at x,. For instance in Figure 18.14 the point x, represents going
to the hospital. Initially, before the patient becomes ill, the probability of no
symptoms is 1, and the cost of no symptoms is 0, and so R, = 0.Therefore R =
Ry = Ly, with minimum at x;, so the patient leads a normal life. Then as the
symptoms appear, R, increases, causing R to follow an increasing sequence of
graphs as in Figure 18.1 (remembering of course that X may be n-dimensional,
whereas in Figures 18.1 and 18.14 it is drawn as only one-dimensional). The
patient will decide to switch to treatment x, at the Maxwell point [graph number
4 in Figure 18.1(a)]. The timid patient will delay until the bifurcation point
|graph number 6 in Figure 18.1(b)], although during the anachronous interval it
would have been better for him to have sought treatment.

Let us look at the doctor’s first problem—his curiosity as to what prompted
the switch. From the medical point of view of treating this type of illness, as
opposed to treating this particular patient, the doctor will be looking at the risk
function R, with a unique minimum at x,. Until he begins to treat this parti-
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Figure 18.14. Three risk functions, R = R, + R|.

cular patient he cannot know R, which is the cost to this patient of the treat-
ment in terms of disruption to normal life, and so he must either ignore Ry,
or include an estimated value for the hypothetical general patient. If he ignores
Ry, then R, can only give him information on the best treatment x,, and can-
not give him any information about either of the switch points 4 or 6. There-
fore, there can be no general answer as to what triggers the switch. More-
over from the point of view of R, even the intelligent decision switch 4 may
appear as timid, while from the point of view of R prior to the decision switch
the medical assessment R, must appear limited. Therefore, initially the patient
may appear timed to the doctor, and the doctor may appear limited to the patient,
because they are necessarily using different loss functions and therefore different
risk functions.

We now turn to the doctor’s second problem of frustration at the stubbornness
of the recovering patient who persists in behaving as though he or she were still
ill. The situation is represented by the graph of Figure 18.1 played in the reverse
order 7, 6, ..., 1. Since the doctor is by now treating the individual patient
rather than thinking in terms of the general patient, he will have abandoned R, in
favor of R, and be expecting the patient to make the decision switch back to
normal life at the Maxwell point 4. However, by this time, the patient may have
become an expert on his own illness. He may have become so accustomed to
paying the fixed penalty Ly(x,), that he now discounts it by adopting the limited
medical point of view of minimizing R, at x,. Thus he is lead into persisting in
the local minimum x, during the anachronous interval from 4 to 2 to the doctor’s
frustration. This time it is the patient who is limited, although to the doctor he
again appears timid.

APPENDIX

Here is a definition of genericity sufficient for the classification theorems to
hold. Smooth means that all partial derivatives exist to all orders. Let X C R".
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Let E be the ring of germs of smooth functions R”, 0 — R stratified by the orbits
of the group of germs of smooth diffeomorphisms R”, 0 — R”, 0 acting on the
right. Given P:C X X X Y — R such that [P(xy)dy =1, for all cEC, xEX,
and given L:C X X XY — R, define R:C X X — R by R.(x) =
JLxy)P.(x,y)dy. Call L generic for P if R is smooth and the map R":C X X —
E given by Rj(x)(x') = R.(x + x') — R,(x) is transverse to the stratification.
Suppose dimension C < 5.

THEOREM 1. If L is generic for P then L' is generic for P’, for sufficiently
small perturbations L', P' of L, P. If L is not generic for P then there exist
arbitrarily small perturbations L' of L that are generic for P.

In other words genericity is open dense. Therefore we are justified in using
generic models.

THEOREM 2. If L is generic for P then the resulting map x:S — C is stable
under sufficiently small perturbations of L and P, and all its singularities are
elementary catastrophes.

Therefore we are justified in using elementary catastrophes as models.
For proofs, see Zeeman (1977), together with the observation that any
required perturbation R’ of R can be obtained by choosing L' = L — R + R'.
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